Memory Buses*

Charles B. Cameron

12 November 2008

Addresses
Data
Data Transfer Control
Arbitration Control

Master Save

Figure 1: Memory Buses

1 Components of a Memory-
Bus

The purpose of a memory bus is to convey data from
a master device (a processor) to a slave device (a
memory) and vice versa. There are several aspects
to a bus. Figure[Ilshows the principal components of
a memory bus.

Addresses are provided by the master to the slave.
Since addresses have n bits, there will be 2™ possible
addresses in the system. It is quite common, though,
to have a system in which not all locations are im-
plemented. For example, we might have a system
with 10-bit addresses, capable of handling 2!° = 1024
distinct addresses, yet containing only a single 8-
bit address memory device with 256 locations within
it. The remaining 768 locations would be unimple-
mented.

Once the master has provided a valid address (one
corresponding to an implemented memory location),
a data transfer will ensue. Whether this is a write

*Course notes for EE361 Microprocessor-based Digital De-
sign

(a transfer from the master to the slave) or a read
(a transfer in the opposite direction), the data will
flow across the data lines of the memory bus. The
decision about whether to perform a read or a write
is made by the master and signaled via the control
bus. The control bus typically includes additional
controls such as a chip select to designate a single
slave device. Doing this permits multiple slaves to be
connected to the same data lines without the risk of
more than one of them trying to place data on the
data lines.

It is also possible to have multiple masters share
the same address, data, and control lines in a mem-
ory bus. This requires additional control lines, shown
in Figure [Ml as Arbitration Control lines. The arbi-
tration control selects a single master to place data
on the address lines and the control lines. The mas-
ter does not take over the arbitration lines: these are
always handled by the same arbitration control unit.
However, this might be a task permanently assigned
to one of the master devices rather than to a distinct
device.

There are two ways for multiple masters to signify a
desire to get control of the memory bus. One of these
relies on an open-collector line, the other relies on a
tristate line. It is permissible for multiple masters
simultaneously to request control of the bus if the
request line is an open-collector line. If this happens
on a tristate request line, a short circuit may result
since one contending master might be trying to put
a logical 1 on the line and another might be trying to
put a 0 on the same line. There are two commonly
used approaches to making the trisate request line
work:

e The arbitration controller selects one master at

5
Grant

Arbitrator | Grant

Master 1 1 Grant

Master 2 — 7 Master 3

T Bus Reguest ‘ ‘

Figure 2: Arbitration via a Daisy Chain

a time and polls it to see if it wants control of
the memory bus.

e There are separate request lines for each of the
competing masters. The arbitration controller
might use a priority encoder for choosing the
winning contender.

When an open-collector request line is used, there
need only be one such line. However, the arbitra-
tion controller still needs a way of discovering which
master requested control of the memory bus.

Some sytems use a daisy-chain arrangement, as
shown in Figure 2 In this scheme, a master requests
access to the memory bus by asserting the Bus Re-
quest signal, which is typically an open-collector line.
The arbitrator cannot know which master requested
the access but issues a Grant signal to the first master
in the daisy chain. This device therefore has the first
crack at accessing the bus. If that master did not re-
quest access to the bus, it simply passes the grant on
to the next device in the daisy chain. On the other
hand, if it did request access, it refrains from passing
on the grant until it has finished using the bus.

The last master in the daisy chain behaves in the
same manner. However, its output grant is returned
to the arbitrator. On seeing the grant come back, the
arbitrator knows that all devices have had a chance
to use the bus and are now finished with it. Once a
master has passed the grant on to the next master in
the daisy chain, it must also refrain from using the
memory bus itself and will have to wait for another
arbitration cycle. For now, it has missed its chance.

As shown in Figure[2] the daisy-chain gives access
to the bus to every master which needs it, albeit in
a particular order of priority. In the version of the
scheme shown in Figure [3] the arbitrator intervenes

ArbitratorGr&t Master 1 | Crant, Master 2 |Grant Master 3
TBusRequest
Bus Busy

Figure 3: Daisy-Chain Arbitration of a Single Master

after every bus access. Once a master has received the
grant signal, it asserts the Bus Busy signal and with-
draws (de-asserts) the Bus Request. At this point
the arbitrator withdraws the Grant signal. This does
not mean that the master must relinquish control of
the bus, however. Once the master has finished with
the bus it does not relay the grant signal to the next
master in the daisy chain, as is the case in the scheme
shown in Figure 2l Instead, it signals the arbitrator
that it is finished by withdrawing the Bus Busy sig-
nal.

In the meantime, other masters may or may not
have asserted the Bus Request line. If none have then
the the arbitrator need do nothing until the next time
the Bus Request line is asserted by some master. If
another device has already requested the bus while
the first master has been using it, then the arbitrator
can issue a new grant right away.

An advantage to the scheme in Figure Bl over that
in Figure 2 is that high-priority devices will never
have to wait for more than one lower-priority master
to finish with the bus before they get service again. A
disadvantage is that low-priority masters can be com-
pletely blocked from ever getting access to the mem-
ory bus if higher priority masters are always using
it. The designer must carefully assess these factors
in deciding which scheme to use.

Under the daisy-chain arrangement, the amount of
time a master waits to get access to the bus depends
on several significant factors:

e Where is it in the chain? The masters closest
to the arbitrator have the highest priority. For
the scheme in Figure 2] this means they will be
serviced first within a cycle. For the scheme in
Figure[3it may allow them to totally monopolize

the bus. When only one master requests access
to the bus, the position of the master is of less
significance. Only the time for the grant signal
to propagate through the daisy chain then affects
the access delay.

e How many masters are in the chain? Generally
speaking, the more masters there are competing
for a bus, the lower will be the access speed, at
least for low-priority masters.

e How often does a given master require access to
the bus? If the bus is in particularly high de-
mand, with every master needing frequent ac-
cess, masters may have to wait frequently for
their turn to use the data bus.

e For how long does a master use the bus? Some
masters, such as Direct Memory Access (DMA)
controllers may need it for lengthy bursts of data.
All other uses are completely blocked while this
is going on.

2 Bus Handshake Protocols

We shall consider four kinds of bus handshake proto-
cols:

1. Synchronous
2. Asynchronous
3. Semisynchronous

4. Split cycle

2.1 Synchronous Bus Handshakes

In many ways Synchronous Bus Handshakes are the
easiest to implement. All transfers are performed ac-
cording to a clock transmitted by the master and the
clock is the only control signal needed. A single data
transfer occurs on every clock cycle. A slave is re-
quired to keep up with the master, a requirement
which constrains either the clock rate or the choice
of slaves in a system. This is usually the fastest kind
of transfer.

Master Clock

Address

Data

Decode

Buffer

Save

Figure 4: Synchronous Handshaking

I
U BN BV B

U Skew, Decode, & Setup Time

Clock ‘ ‘ ‘

Address

I Hold and Skew Time

Figure 5: Timing for Synchronous Bus Handshaking

Figure M shows the general arrangement. For a
write operation, the master places an address and
data on the bus. A data transfer takes place when
the clock cycle begins. The address may be partially
decoded by circuitry outside the memory device, cir-
cuitry which activates the designated slave by issu-
ing a chip-select signal to it. Additional decoding of
the address is usually necessary within the slave de-
vice because more than one of the addressable loca-
tions supported by the address length is likely stored
within the device.

There are several sources of delay in the transfer,
as indicated in Figure

e Progagation delay from the master to the slave

:
-

Figure 6: Signal Skew on the Address Bus

and from the slave to the master. The propaga-
tion delay often varies from one address or data
line to the next, with the result that the signal
becomes skewed, as shown in Figurelll Skew may
also be introduced by variations in the propaga-
tion time through different gates. In fact, typi-
cally these are more significant sources of skew.
Differences in input capacitance will also induce
skew since they will require different amounts of
time to cause an input to reach the same voltage.

e Decode time. Although the address decoding cir-
cuits are asynchronous (combinational) circuits
and so are very fast, they nonetheless take some
time to process the address.

e Setup time. A signal may need to be present for
some non-zero amount of time before being used.

e Hold time. A signal may need to be present for
some non-zero amount of time after being used.

The figure shows two examples of a write operation
and one of a read.

For both write and read operations, the master
must ensure the fully decoded address is available
at the address inputs to the slave when the clock cy-
cle begins. It does this by taking into account the
maximum amounts of propagation delay, skew, de-
code delay, and setup time required and sending the

Master J\
Save \

PN

~

Time

Figure 7: Master-Slave Protocol

address at least that far in advance of the beginning
of the clock cycle. The master must also observe the
hold time required by the slave. The same require-
ments apply to data during a write cycle.

The figure suggests that the slave needs half a clock
cycle to accept the data from the master but this is
not the most common situation. Usually, the leading
edge of the clock cycle is used to trigger the transfer.
After the slave places data on the bus, that data will
not reach the master until another skew delay has
elapsed. The master may impose a setup and a hold
time on the slave, too. In the figure, the transfer
from slave to master is depicted as occurring halfway
through the clock cycle and so the master’s setup
time is not shown, although the skew and hold times
are.

If the hold and setup times differ between master
and slave or between address and data, the longest
requirements must be honored.

The most serious drawback to synchronous bus
handshaking is that the clock rate cannot exceed that
which can be accommodated by the slowest slave on
the bus. If the slowest device is seldom needed, the
slow pace it imposes on all other devices can be in-
tolerable.

2.2 Asynchronous Bus Handshakes

There is no clock when Asynchronous Bus Handshak-
ing is used. A pair of control lines is dedicated to
coordinating the transfer, as shown in Figure [[l As
a result, the principal drawback to the synchronous
handshaking scheme is overcome: fast devices re-
spond quickly, even though slow devices may take
longer.

The master device operates the Master line and

the slave device operates the Slave line. A typical
handshaking sequence using these two control lines is

1. Master device asserts the Master signal, effec-
tively telling the slave to accept or provide data.

2. Slave device responds by asserting the Slave sig-
nal, telling the master “OK”.

3. Master responds by withdrawing (de-asserting)
the Master signal, telling the slave to finish the
data transfer.

4. Slave withdraws the Slave signal, telling the
master it has finished.

This is a completely interlocked asynchronous bus
handshaking sequence. It is very widely used because
it is so reliable and efficient. However, synchronous
handshaking will produce faster transmission in a sys-
tem where the slaves do not have widely divergent
access times.

2.3 Semisynchronous Bus Hand-
shakes

The semisynchronous bus uses the clock signal of the
synchronous handshake but adds an additional sig-
nal, Wait. If a slave cannot complete its data transfer
within a single clock cycle it asserts the Wait signal,
telling the master to insert extra clock cycles before
completing the operation. Thus the semisynchronous
bus has attractive features of both the synchronous
and the asynchronous bus: slow slaves can be ser-
viced, as they can on the asynchronous bus, without
interfering with the rapid operation of fast slaves, as
they do on the synchronous bus.

There is a limit on the physical length of the
semisynchronous bus, imposed because the Wait sig-
nal must reach the master before the clock cycle ends.
This length is the distance traversed in one half the
round-trip signal time. Asynchronous buses do not
suffer from this restriction: the master will wait as
long as necessary for the slave to respond.

Address
Master % %
Vo)) | [

/

Slave V

Data]
Master transmits Busidle: other Slave transmits to
todave masters can use it master

Figure 8: Split-Cycle Bus Timing

2.4 Split-Cycle Bus Handshakes

Another scheme for supporting a mixture of fast and
slow devices is the split-cycle bus. It uses an asyn-
chronous bus, with a twist, as depicted in Figure]
In the first phase of communication, the master sends
a command to the slave. However, it does not wait
for a reply, instead terminating the exchange. Some
time later, when the slave has completed its task,
it sends data back to the master by taking on the
role of the master and treating the master as a slave.
The hardware required to do this is more complex,
though, because both the master and the slave must
be capable of controlling the bus and a bus arbitrator
is absolutely required.

The read command is a little different in split-cycle
operation. The master must pass the slave its address
when it contacts the slave. The slave uses this address
later to call the master up again. So the two halves
of a split read cycle really both are writes: one by
the master, one by the slave.

References

[1] Stone, Harold S., Microcomputing Interfacing,
Reading, Massachusetts, Addison-Wesley Pub-
lishing Company, 1982.

	Components of a MemoryBus
	Bus Handshake Protocols
	Synchronous Bus Handshakes
	Asynchronous Bus Handshakes
	Semisynchronous Bus Handshakes
	Split-Cycle Bus Handshakes

