
Address Bus Decoding∗

Charles B. Cameron

17 November 2008

Design the address bus decoding circuitry for a system with requirements
shown in Table 1 using the devices shown in Table 2.

Solution Memory map

First draw the memory map, as shown in Figure 1. The number of fast
RAM devices can be obtained by simple arithmetic:

(768 bytes)

(

1 device

256 bytes

)

= 3 devices.

∗Course notes for EE361 Microprocessor-based Digital Design

Starting

Device address

768 bytes of high-speed (15 ns) static RAM 0x0400
Four ACIAs 0x1000
One PIA 0x1010
Three buffers 0x1020
2K ROM 0x2800

Table 1: Desired System Configuration

Device Architecture Chip-Select Labels

2K RAM (low-speed) 2048×8 bits CS0,CS1,CS2

4K ROM 4096×8 bits OE1, OE2

MC6820 PIA (Parallel I/O) 4×8 bits CS0,CS1, CS2

MC6850 ACIA (Serial I/O) 2×8 bits CS0,CS1, CS2

Octal buffer 1×8 bits G0,G1

High-speed RAM 256×8 bits CS0,CS1

16K ROM 16,384×8 bits OE
74LS165 Parallel-load 8-bit shift reg 1×8 bits LD
4K low-speed RAM 4096×8 bits OE1

Table 2: Available Devices

1



0000

FFFF

3×RAM

03FF

0400

06FF

0700

4×ACIA

0FFF

1000

1007
1008

1×PIA

100F

1010

1013
1014

3×Buffer

101F

1020

1022
1023

1×ROM

27FF

2800

37FF

3800

Figure 1: Memory Map. Note that memory-space utilization is not drawn to scale.

For example, the 4,096-location ROM is shown as equal in size to the 3-location set

of buffers.

2



0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1

Internally decodedC/SFree allocation } Fast RAM
0400–06FF

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1

I/DC/SFree allocation } ACIA
1000–1007

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1

I/DFree allocation } PIA
1010–1013

0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0

C/SFree allocation } Buffer
1020–1022

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1

Internally decodedFree allocation } ROM
2800–37FF

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

Figure 2: Binary memory map

There are two kinds of ROM available: 4K ROM and 16K ROM. In general,
the least expensive option is to use the smallest device which meets the require-
ments. Therefore, we pick the 4K ROM, knowing that about half of it will be
completely unused.

The uppermost address occupied by a particular type of device is found by
adding its extent to its starting address and reducing this total by 1. In the
case of the fast RAM, for example:

0x0400 + 76810 − 1 = 0x0400 + 0x0300 − 1

= 0x06FF.

Next we prepare binary memory maps for each type of device, as seen in Binary
memory mapsFigure 2. The maps show the lowest and the highest address in binary for each

type of device. They also show how the address is subdivided for a particular
device. Some address bits are decoded internally, some are used as chip-select
bits to choose from among several identical devices, and some are used to deter-
mine the type of device being accessed. Some devices, such as the buffer used
here, do not decode any address bits internally. Others, such as the PIA, do not

3



0 0 0 0 0 1 Fast RAM (0400–06FF)A13 A12

0 0 0 1 0 0 0 0 0 0 0 0 0 ACIA (1000–1007)A13 A12 A5 A4

0 0 0 1 0 0 0 0 0 0 0 1 0 0 PIA (1010–1013)A13 A12 A4

0 0 0 1 0 0 0 0 0 0 1 0 0 0 Buffer (1020–1022)A13 A12 A5

0 0 1 0

0 0 1 1
ROM (2800–37FF)}A13 {

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

Figure 3: Free Allocation Table

Fast RAM (0400–06FF)

A9 A8

0 0

0 1

1 0

CS0 CS1

A13 + A12

A13 + A12

A13 + A12

A9 + A8

A9 + A8

A9 + A8

Figure 4: Fast RAM Chip Select Logic

need chip-select bits because there is only one of them. All of them, though,
include free-allocation bits.

The ROM’s address range differs from the address ranges of the other types of
devices in an important respect. Because the ROM’s addresses start at address
0x2800 and straddle a 12-bit address boundary, the free allocation bits for the
ROM are not constant. Below the boundary are addresses from 0x2800 to
0x2FFF; above it lie the remaining addresses, from 0x3000 to 0x37FF. While
this may not be ideal, it still can be coped with.

The free-allocation table is shown in Figure 3. The ROM is the only de- Free-allocation
tablevice whose address includes a 1 in A13. Because the ROM straddles a 12-bit

boundary, bit A12 may be either a 0 or a 1: it is a don’t-care bit.
All other device addresses have a 0 in A13. Of these, only the fast RAM has

a 0 in A12.
The remaining device addresses have a 1 in A12. Of these, only the buffers

have a 1 in A5.
Finally, the ACIA and the PIA have a 0 in A5. They can be distinguished

from each other because the ACIA has a 0 in A4 while the PIA has a 1 in A4.
Armed with equations for identifying the type of device, we can now turn Chip-select

logicour attention to the chip-select logic for each type of device. In each case, we
need to map the equations in the free-allocation table (Figure 3) to the available
chip-select inputs (Table 2). In the case of device types with more than a single
device of that type, we also need to map the chip-select address bits to the
chip-select inputs of each device.

Often it is desirable to use one chip-select input for the equation for selecting

4



ACIA (1000–1007)

A2 A1

0 0

0 1

1 0

1 1

CS0 CS1 CS2

A13 A12 A5 A4

A13 A12 A5 A4

A13 A12 A5 A4

A13 A12 A5 A4

A2 A1

A2 A1

A2
A1

A2 A1

Figure 5: ACIA Chip Select Logic

PIA (1010–1013)
CS0 CS1 CS2

A12 A13 A4

Figure 6: PIA Chip Select Logic

Buffer (1020–1022)

A1 A0

0 0

0 1

1 0

G0 G1

A13 A12 A5

A13 A12 A5

A13 A12 A5

A1 + A0

A1 + A0

A1 + A0

Figure 7: Buffer Chip Select Logic

ROM (2800–37FF)
OE1 OE2

A13 0

Figure 8: ROM Chip Select Logic

5



a device type and use the remaining ones for the chip-select equations. This
works well for the fast RAM devices, as shown in Figure 4, the ACIAs, as
shown in Figure 5; and the buffers, as shown in Figure 7. It does not apply
so well in the case of the PIA, as shown in Figure 6, or the ROM, as shown
in Figure 8, because there is only a single chip of each of these kinds: there is
no chip-select logic. There is only free-allocation logic. This actually leads to
less complicated wiring, though, because only the free-allocation logic equations
need to be considered at all.

Some of the chip-select inputs are active-low. In such cases, the input equa-
tions must be inverted. So, for example, in the case of the fast RAM, we know
from the free-allocation table in Figure 3 that the RAM devices are selected
whenever we have A13 A12. When we connect the inverse of this to the CS0

input we get

CS0 = A13 A12

= A13 + A12.

At this point we are ready to draw a schematic showing how to wire the Schematic
diagramdevices together. This can be seen in Figure 9. Some of the inverters are repre-

sented by bubbles as, for example, on the four-input AND-gate used to supply
the CS0 input for the four ACIA devices. The data outputs and any control
signals not directly related to the decoding problem have been suppressed from
the schematic.

6



CS0 CS1CS2

RS ACIA 0

CS0 CS1CS2

RS ACIA 1

CS0 CS1CS2

RS ACIA 2

CS0 CS1CS2

RS ACIA 3

G0 G1

Buffer 0

CS0 CS1CS2

RS1 PIA 0
RS0

G0 G1

Buffer 1

G0 G1

Buffer 2

A7
A7

A6
A6

A5 A5A4 A4

CS0 CS1

RAM 0

A3
A3

A2
A2

A1 A1A0 A0

A7
A7

A6
A6

A5 A5A4 A4

CS0 CS1

RAM 1

A3
A3

A2
A2

A1 A1A0 A0

A7
A7

A6
A6

A5 A5A4 A4

CS0 CS1

RAM 2

A3
A3

A2
A2

A1 A1A0 A0

A11
A11

A10
A10

A9 A9A8 A8

OE1 OE2

A7
A7

A6
A6

A5 A5A4 A4

ROM

A3
A3

A2
A2

A1 A1A0 A0

A12A13 A8A9 A8A9 A8A9

A13

A13 A12 A5 A2 A1

A0

A2 A1

A13 A12 A5 A1 A0 A1 A0 A12 A13 A4

A1

A0

A0 A0 A0

A2A4

A1 A0

Address bus

Figure 9: Schematic for the complete decoder

7


