
Computer Arithmetic

CAPT Charles B. Cameron

December 2, 2008

1 Addition

The PIC16F884 supports eight-bit addition, setting the carry bit (C) if there is
a carry out of the most significant bit of the sum and setting the zero bit (Z) if
the eight-bit result is zero (that is, eight zero-bits.)

In multi-byte arithmetic, we would want to set the C bit if there is a carry
out of the most significant bit of the most significant byte of the sum and we
would want to set the Z bit if every byte of the sum were zero.

Let xk be a sequence of eight-bit bytes with k ∈ [0, n − 1]. Because each
byte can hold one of 28 = 256 different symbols, this can be interpreted as an
n-digit number x in base 256. The value of x is

x = xn−1xn−2 . . . x2x1x0

= xn−1 , 256n−1 + xn−2 256n−2 + · · ·+ x2 2562 + x1 2561 + x0 2560.

Similarly, let yk be a sequence of bytes that specifies an 8n-bit number y

such that

y = yk−1yn−2 . . . y2y1y0.

Finally, let zk be a sequence of bytes that specifies an 8n-bit number z such
that

z = zk−1zn−2 . . . z2z1z0.

Our objective is to find the sum z = x + y. We can do this by starting with
the least significant bytes of x and y, adding them together, and considering the
meaning of the C and Z values that result from the summation. Repeating this
for the next least significant byte, and so on, will give us the n-byte sum.

We will find it convenient to allocate storage space for an additional byte
zk, as this will make the algorithm easier to express. Ultimately we will use the
contents of zk to determine the final value of the C bit.

We will also need to allocate storage space to keep track of the Z bits gen-
erated by each successive addition step. If any one of these is 0, then the final
value of Z should be 0, too.

1



Algorithm 1 An algorithm for using eight-bit addition to perform multiple-
byte addition.

Require: n bytes for x and y (xk, yk for all k ∈ [0, n− 1].)
Require: n + 1 bytes for z (zk for all k ∈ [0, n].)
Require: one bit for Ztemp {the ultimate value of the Z-bit}.
1: Ztemp ← 1 {assume the result is zero}.
2: z0 ← 0 {no carry into the least significant byte.}
3: for k = 0 to n− 1 do {For each base-256 digit}
4: zk ← zk + xk {add xk to the carry from column k − 1.}
5: if C = 1 then {test the carry bit}
6: zk+1 ← 1 {put the carry in the next column}
7: end if

8: zk ← zk + yk {add yk to the sum byte}
9: if C = 1 then {test the carry bit}

10: zk+1 ← 1 {put the carry in the next column}
11: end if

12: if Z = 0 then {test the zero bit}
13: Ztemp ← 0 {any non-zero byte guarantees a non-zero result}
14: end if

15: end for

16: Z ← Ztemp {final value of the Z bit}
17: if zn = 1 then {determine final value of the C bit}
18: C ← 1
19: else

20: C ← 0
21: end if

2



An algorithm that will do the job is Algorithm 1 on the preceding page.
An example of the application of this algorithm with x = x1x0 =FF1116 and

y = y1y0 =03F516 follows. For this example, n = 2 because each addend has
two bytes in it.

Step Action

1 Ztemp ← 1
2 z0 ← 0
3 k ← 0
4 z0 ← z0 + x0 = 00 + 11 = 11, C ← 0, Z ← 0
8 z0 ← z0 + y0 = 11 + F5 = 06, C ← 1, Z ← 0

10 z1 ← 1
13 Ztemp ← 0
3 k ← k + 1 = 0 + 1 = 1
4 z1 ← z1 + x1 = 01 + FF = 00, C ← 1, Z ← 1
6 z2 ← 1
8 z1 ← z1 + y1 = 00 + 03 = 03, C ← 0, Z ← 0

13 Ztemp ← 0
16 Z ← Ztemp = 0
18 C ← 1

At the end of the execution of this example, we have C = 1, Z = 0, and
z1z0 = 0306. This represents the sum 1030616 = 6631010, which really is the
sum of FF1116 = 6529710 and 03F516 = 101310.

2 Subtraction

The PIC16F884 supports eight-bit subtraction, too, resetting the carry bit (C)
to 0 if there is a borrow out of the most significant bit of the difference and
setting the zero bit (Z) if the eight-bit result is zero (that is, eight zero-bits.)

In multi-byte arithmetic, we would want to reset the C bit if there is a borrow
out of the most significant bit of the most significant byte of the difference and
we would want to set the Z bit if every byte of the difference were zero.

Let xk and yk be two sequences of eight-bit bytes with k ∈ [0, n− 1].
Our objective this time is to find the difference z = x−y. We can do this by

starting with the least significant bytes of x and y, subtracting y from x, and
considering the meaning of the C and Z values that result from the difference.
Repeating this for the next least significant byte, and so on, will give us the
n-byte difference.

As in the case with addtion, we will find it convenient to allocate storage
space for an additional byte zk, as this will make the algorithm easier to express.
Ultimately we will use the contents of zk to determine the final value of the C
bit.

3



As before, we will also need to allocate storage space to keep track of the Z
bits generated by each successive addition step. If any one of these is 0, then
the final value of Z should be 0, too.

Algorithm 2 An algorithm for using eight-bit subtraction to perform multiple-
byte subtraction.

Require: n bytes for x and y (xk, yk for all k ∈ [0, n− 1].)
Require: n + 1 bytes for z (zk for all k ∈ [0, n].)
Require: one bit for Ztemp {the ultimate value of the Z-bit}.
1: Ztemp ← 1 {assume the result is zero}.
2: z0 ← 0 {no borrow from the least significant byte.}
3: for k = 0 to n− 1 do {For each base-256 digit}
4: zk ← xk − zk {reduce xk by 1 if there is a borrow from column k − 1.}
5: if C = 0 then {test the carry bit for a borrow}
6: zk+1 ← 1 {prepare to subtract 1 from the next column}
7: end if

8: zk ← zk − yk {subtract yk from the difference byte}
9: if C = 0 then {test the carry bit for a borrow}

10: zk+1 ← 1 {prepare to subtract 1 from the next column}
11: end if

12: if Z = 0 then {test the zero bit}
13: Ztemp ← 0 {any non-zero byte guarantees a non-zero result}
14: end if

15: end for

16: Z ← Ztemp {final value of the Z bit}
17: if zn = 1 then {determine final value of the C bit}
18: C ← 0
19: else

20: C ← 1
21: end if

An algorithm that will do the job is Algorithm 2.
An example of the application of this algorithm with x = x1x0 = 00E216

and y = y1y0 = 00F516 follows. For this example, n = 2 because each addend
has two bytes in it.

4



Step Action

1 Ztemp ← 1
2 z0 ← 0
3 k ← 0
4 z0 ← x0 − z0 = E2− 00 = E2, C ← 1, Z ← 0
8 z0 ← z0 − y0 = E2− F5 = ED, C ← 0, Z ← 0

10 z1 ← 1
13 Ztemp ← 0
3 k ← k + 1 = 0 + 1 = 1
4 z1 ← x1 − z1 = 00− 01 = FF, C ← 0, Z ← 0
6 z2 ← 1
8 z1 ← z1 − y1 = FF− 00 = FF, C ← 1, Z ← 0

13 Ztemp ← 0
16 Z ← Ztemp = 0
18 C ← 0

At the end of the execution of this example, we have C = 0, Z = 0, and
z1z0 = FFED. This represents the difference FFED16. Interpreting the sub-
trahend, the minuend, and this difference as two’s-complement numbers, the
difference is 1111 1111 1110 1101 = −0000 0000 0001 0011 = −1910, which really
is the difference of 00E216 = 22610 and 00F516 = 24510.

3 Multiplication

The PIC16F884 has no hardware support for eight-bit multiplication. We can
write an algorithm to do eight-bit multiplications in software. Once this algo-
rithm is available, multiple-byte multiplication can also be implemented.

There is no special significance to the carry bit with multiplication. We
might as well implement our algorithm so that it does not corrupt the carry
bit. This permits the carry bit generated by an earlier addition or subtraction
to be tested either before or after a multiplication, as the programmer pleases.
Since the algorithm makes repeated use of addition, however, we will need to
take care to save the carry bit before performin the eight-bit multiplication.

Let x and y be two eight-bit bytes. The largest possible eight-bit number is
FF16 = 25510. The product of this number with itself can be expressed as

(28 − 1)(28 − 1) = 216 − 2(28) + 1

= 216 − (29 − 1)

= 1 0000 0000 0000 0000− (1 1111 1111)

= 1111 1110 0000 0000,

which fits within a 2×8 = 16-bit word. Similar reasoning shows that, in general,
the product of any two n-bit words fits within a 2n-bit word.

5



Our objective this time is to find the product z = x× y. We can do this by
starting with the least significant bit of the multiplier y. If that bit is a 1, then
we want to add a suitable multiple of x into a running sum. These multiples
all are even powers of 2. The particular power of 2 is the same as the index
number of the multiplier bit we are considering.

To illustrate the idea, consider the product of the multiplicand 3510 = 2316 =
0010 00112 and the multplier 20310 = CB16 = 1100 10112. Multiples of the
multiplicand by the powers of 2 shown in the table are added together. The
particular powers are those that correspond to the 1-bits in the multiplier.

0010 0011 Power
× 1100 1011 of 2

0010 0011 0
0 0100 011 1

001 0001 1 3
00 1000 11 6

001 0001 1 7

0001 1011 1100 0001

The product is 1BC116 = 710510 = 3510 × 20310.
We need to allocate storage space for the two- byte product z1z0. We also

need to allocate storage space to keep track of the Z bits generated by each
successive addition step. If any one of these is 0, then the final value of Z
should be 0, too. Additionally, we need to save a copy of the C bit and restore
it when the algorithm is complete.

An algorithm that will do the job is Algorithm 3 on the following page.
An example of the application of this algorithm for the same two values used

in the illustration above, that is, with x = 2316 = 0010 00112 and y = CB16 =
1100 10112, follows.

Step Action

1 Ctemp ← C

2 Ztemp ← 1
3 z0 ← y = CB16 = 1100 10112

4 z1 ← 0
5 k ← 0
7 z1 ← z1 + x = 0 + 0010 0011 = 0010 0011
7 C ← 0
7 Z ← 0
9 Ztemp ← 0

14 z0 ← z1〈0〉, z0〈7 . . . 1〉 = 1110 0101
15 z1 ← C, z1〈7 . . . 1〉 = 0001 0001
5 k ← k + 1 = 0 + 1 = 1
7 z1 ← z1 + x = 0001 0001 + 0010 0011 = 0011 0100
7 C ← 0

6



Algorithm 3 An algorithm for finding the 16-bit product of two eight-bit num-
bers: z = x× y. The multiplicand is x and the multiplier is y.

Require: One byte for x and one for y.
Require: Two bytes for z = z1z2.
Require: one bit for Ztemp {the ultimate value of the Z-bit}.
Require: one bit for Ctemp {the saved value of the C-bit}.
1: Ctemp ← C {save the C bit}
2: Ztemp ← 1 {assume the result is zero}.
3: z0 ← y {place the multiplier in z0}
4: z1 ← 0 {zeroize the high-order product byte.}
5: for k = 0 to 7 do {For each of the eight bits}
6: if z0〈0〉 = 1 then {test the least significant multiplier bit still remaining}
7: z1 ← z1 + x {add in the multiplicand}
8: if Z = 0 then {test the Z bit}
9: Ztemp ← 0

10: end if

11: else

12: C ← 0
13: end if

14: z0 ← z1〈0〉, z0〈7 . . . 1〉{shift product right}
15: z1 ← C, z1〈7 . . . 1〉
16: end for

17: Z ← Ztemp {final value of the Z bit}
18: C ← Ctemp {restore the C bit}

7



Step Action

7 Z ← 0
9 Ztemp ← 0

14 z0 ← z1〈0〉, z0〈7 . . . 1〉 = 0111 0010
15 z1 ← C, z1〈7 . . . 1〉 = 0001 1010
5 k ← k + 1 = 1 + 1 = 2

12 C ← 0
14 z0 ← z1〈0〉, z0〈7 . . . 1〉 = 0011 1001
15 z1 ← C, z1〈7 . . . 1〉 = 0000 1101
5 k ← k + 1 = 2 + 1 = 3
7 z1 ← z1 + x = 0000 1010 + 0010 0011 = 0011 0000
7 C ← 0
7 Z ← 0
9 Ztemp ← 0

14 z0 ← z1〈0〉, z0〈7 . . . 1〉 = 0001 1100
15 z1 ← C, z1〈7 . . . 1〉 = 0001 1000
5 k ← k + 1 = 3 + 1 = 4

12 C ← 0
14 z0 ← z1〈0〉, z0〈7 . . . 1〉 = 0000 1110
15 z1 ← C, z1〈7 . . . 1〉 = 0000 1100
5 k ← k + 1 = 4 + 1 = 5

12 C ← 0
14 z0 ← z1〈0〉, z0〈7 . . . 1〉 = 0000 0111
15 z1 ← C, z1〈7 . . . 1〉 = 0000 0110
5 k ← k + 1 = 5 + 1 = 6
7 z1 ← z1 + x = 0000 0110 + 0010 0011 = 0010 1001
7 C ← 0
7 Z ← 0
9 Ztemp ← 0

14 z0 ← z1〈0〉, z0〈7 . . . 1〉 = 1000 0011
15 z1 ← C, z1〈7 . . . 1〉 = 0001 0100
5 k ← k + 1 = 6 + 1 = 7
7 z1 ← z1 + x = 0001 0100 + 0010 0011 = 0011 0111
7 C ← 0
7 Z ← 0
9 Ztemp ← 0

14 z0 ← z1〈0〉, z0〈7 . . . 1〉 = 1100 0001
15 z1 ← C, z1〈7 . . . 1〉 = 0001 1011
17 Z ← Ztemp = 0
18 C ← Ctemp

At the end of the execution of this example, we have restored the value
of C and set Z = 0, indicating that the product is not zero. The product is
z = z1z0 = 1BC116 = 710510, which, as in the earlier illustration, is correct.

8



x0x1x2

y0y1y2

x0y0

x0y1

x1y0

x0y2

x1y1

x2y0

x1y2

x2y1

x2y2

z5 z4 z3 z2 z1 z0

Figure 1: Multiple-byte multiplication. In this case the figure shows the result of
multiplying two three-byte numbers, x and y, together to produce the six-byte
product z. Each of the small boxes depicts an eight-bit byte within a larger
variable. The large boxes depict a 16-bit partial product. The alignment of
these larger boxes shows how they should be added together to generate z.

4 Multiple-byte Multiplication

In the previous section we saw an algorithm to multiply two unsigned eight-
bit values and produce a 16-bit product. Once this is available, a software
implementation of multiple-byte multiplication can be written using the simpler
multiplication as a base. An example of the way in which eight-bit components
of larger numbers are combined is depicted in Figure 1. This example uses
three-byte numbers x and y. The large boxes depict the 16-bit partial products.
They are lined up in such a way that the addition of all the partial products
will yield the six-byte product z.

Adding the 16-bit boxes presupposes that a 16-bit addition routine is avail-
able. How to write such a routine was discussed in in Section 1 on page 1.

An example of the use of this outline of the algorithm is shown in Figure 2
on the next page.

If we increase the number of bytes in the two operands from 3 to 4, we get
the result shown in Figure 3 on page 11

9



x0 = E5x1 = A7x2 = 36

y0 = 9Dy1 = 10y2 = B2

x0y0 =8C71

x0y1 =0E50

x1y0 =666B

x0y2 =9F3A

x1y1 =0A70

x2y0 =211E

x1y2 =741E

x2y1 =0360

x2y2 =258C

z5 = 26 z4 = 04 z3 = 49 z2 = 3D z1 = 47 z0 = 71

Figure 2: Example of multiple-byte multiplication with three-byte addends. The
values are shown in hexadecimal rather than in binary for the sake of compact-
ness. This problem computes the product 36 A7E5×B2 109D = 2604 493D 4771.

10



x0x1x2x3

y0y1y2y3

x0y0

x0y1

x1y0

x0y2

x1y1

x2y0

x0y3

x1y2

x2y1

x3y0

x1y3

x2y2

x3y1

x2y3

x3y2

x3y3

z7 z6 z5 z4 z3 z2 z1 z0

Figure 3: Multiple-byte multiplication. In this case the figure shows the result of
multiplying two four-byte numbers, x and y, together to produce the eight-byte
product z. Each of the small boxes depicts an eight-bit byte within a larger
variable. The large boxes depict a 16-bit partial product. The alignment of
these larger boxes shows how they should be added together to generate z.

11


