
EE362 INTRODUCTION TO COMPUTER ARCHITECTURE

Objectives

Spring 2009

CAPT Charles B. Cameron

December 31, 2008

Textbook: Heuring, Vincent P. and Jordan, Harry F., Computer systems design and architecture,

second edition, Pearson Education, Inc., Upper Saddle River, New Jersey, 2004.

1. History of Computer Architecture

• Know the history of the development of the modern digital computer.

2. Overview of Modern Computer Architecture

• Understand the Princeton Architecture.

• Understand the Harvard Architecture.

• Know the main components of a modern digital computer.

• Understand the difference between a reduced instruction-set computer (RISC) and a com-

plex instruction-set computer (CISC) architecture.

• Understand how parallel computing is used to increase speed.

• Know the difference between primary memory and secondary memory.

• Understand the distinction between memory (on the one hand) and input and output (on the

other hand.)

3. Review of digital design

• Know the symbols for and know how to use standard logic gates.

• Know the symbols for and know how to use flip-flops and registers.

• Know the symbols for and know how to use decoders and encoders.

• Know the symbols for and know how to use multiplexers and demultiplexers.

4. Computer arithmetic

• Be able to work in binary, octal, hexadecimal, and any arbitrary number base.

• Be able to derive the equations for a carry look-ahead adder.

• Be able to convert numbers from decimal into IEEE floating-point format and vice versa.

• Be able to design and build an n-digit two’s-complement adder in hardware.

• Explain how multiplication can be done in hardware.

• Explain how division can be done in hardware.

• Explain how a floating-point arithmetic processor works.

• Be able to use Booth’s encoding (Radix-2 and Radix-4) by hand for multiplying numbers

together.

1



5. Processor design

• Explain the difference between 0-, 1-, 2-, and 3-operand computer instructions.

• Explain immediate, register, direct, indirect, indexed, based-index, stack, and relative ad-

dressing modes.

• Explain the instruction formats of a particular simple RISC computer..

• Be able to write assembly-language programs for a particular simple RISC computer..

• Be able to assemble such programs by hand into machine-language programs.

• Be able to use abstract and concrete register transfer notation (RTN).

• Be able to implement RTN in hardware.

• Know how to use tri-state gates rather than multiplexers and vice versa.

• Know how to design the control path and data path of a computer by an iterative process.

• Understand how to implement reset and exception processing in hardware.

• Explain the difference between a microprogrammed control unit and a hard-wired control

unit.

6. Fast computation

• Know how to use pipelining to increase hardware speed.

• Know how to use parallel processing to increase hardware speed.

• Know how to deal with pipeline hazards by stalling the pipeline, forwarding results, and

inserting no-operations.

• Know how to construct a hash table.

7. Software issues

• Know the purpose of

– an operating system;

– an assembler;

– a compiler;

– an interpreter;

– a linker;

– a loader;

– macros.

• Explain the meaning of

– sequential processes;

– coroutines;

– procedures;

– functions;

– masters and slaves;

– servers and clients;

– peer-to-peer computing.

8. Memory

• Be able to construct a memory system from small memory modules to achieve:

– a wider data bus;

– a larger address space.

• Design a cache memory system with

2



– an associative cache;

– a direct-mapped cache;

– a block-set-associative cache.

• Explain the difference between a paged memory system and a segmented memory system.

• Explain address translation in paged and segmented memory systems.

• Be able to use single-error-correction double-error-detection (SECDEC).

• Explain how to make an interleaved memory module for high-speed memory access.

• Given a CRC polynomial, be able to calculate a CRC checksum.

9. I/O

• Explain the difference between programmed and interrupt-driven I/O.

10. High-performance computer design

• Explain how dynamic multi-issue machines (superscalar) and static multi-issue machines

(VLIW) can start executing more than one instruction at a time.

3


