
EC 362 Problem Set #1

1) Using the following MIPS program, determine the instruction format for each instruction and the HEX
values of each instruction field. Fill in the table below with those values:

 addi $v0, $zero, 0 # count = 0
 loop: lw $v1, 0($a0) # load word
 addi $v0, $v0, 1 # count++
 sw $v1, 0($a1) # store word
 addi $a0, $a0, 4 # ptr to next src
 addi $a1, $a1, 4 # ptr to next dest
 bne $v1, $zero, loop # loop if copied word is not 0
 addi $v0, $v0, -1 # count--

Instr Opcode Rs Rt Addr/immed
Addi
Lw

Addi
Sw

Addi
Addi
Bne
Addi

2) Consider the following Java code segment:

 while (save[i] == k) {
 i = i + 1;
 }

An inefficient Java translation of this into MIPS might result in assembly code that uses both a
conditional branch (for the conditional test) and an unconditional jump (for the repeat of the while)
each time through the loop, in addition to the array bounds checking tests required by Java. For
example, if the base address of the array save is in register $s6, i is stored in register $s3, and k is
stored in register $s5, then one possible inefficient MIPS code sequence would be

 lw $t2, 4($s6) this is the length of "save"
 loop: slt $t1, $s3, $zero 1 means i < 0
 bne $t1, $zero, except index out of bounds
 slt $t1, $s3, $t2 1 means i < save.length
 beq $t1, $zero, except index out of bounds
 sll $t1, $s3, 2 4*i
 add $t1, $t1, $s6 &save[i] - 8
 lw $t0, 8($t1) load save[i]
 bne $t0, $s5, exit save[i] != k?
 addi $s3, $s3, 1 i++
 j loop
 exit:

Note that Java Arrays store the length of the array in position $s6 + 4 and then the array itself starts
at position $s6 + 8.

Only poor compilers would produce code with such excessive loop overhead (3 branches + 1 jump).
Write a version of the assembly code for this segment so that it uses at most two branches/jumps (total)
each time through the loop. Please note that regardless of the optimization you perform, Java still
requires that the array index be "bounds checked" for 0 ≤ i < save.length in every iteration! How many
instructions are executed before and after the optimization if the number of loop iterations is 100.

3) Consider the following fragment of C code:

 for (i = 0; i <= 100; i++) {
 a[i] = b[i] + c;
 }

Assume that a and b are arrays of words and the base address of a is in $a0 and the base address of b
is in $a1. Register $t0 is associated with variable i and register $s0 with variable c. Write efficient
MIPS code for this segment. How many instructions are executed during the running of this code?

4) Write a MIPS assembly language function to implement the C / C++ atoi (ASCII to integer)

function. The function prototype for atoi is as follows:

int atoi(const char *p);

atoi converts an ASCII decimal string pointed to by the variable p into its corresponding integer
value. For example, atoi("24") would pass a pointer to the three byte sequence 50 (the ASCII
decimal value for '2'), 52 (the ASCII decimal value for '4'), 0 (the ASCII decimal value for '\0' which is
the string termination value) which represents '2', '4', '\0'. The result would then be the integer 24
(decimal). The program need not handle negative numbers, but if any non-digit character appears in
the string, your program should exit with a return value of -1. You may use the MUL pseudo-
instruction if needed. Use spim to test your function!

Solutions to Problem Set #1

1)

Instr Opcode Rs Rt Addr/immed
Addi 8 0 2 0
Lw 23 4 3 0

Addi 8 2 2 1
Sw 2B 5 3 0

Addi 8 4 4 4
Addi 8 5 5 4
Bne 5 3 0 FFFA
Addi 8 2 2 FFFF

 The address in the bne instruction is a word offset of -6 (FFFA in HEX) since we need to jump

backwards 6 words (since it is relative to the instruction following the bne). Note, the book often
stores this offset field in bytes, which would then give a result of -24 bytes. But the actual MIPS
address would be -6 since all instructions must begin on word boundaries.

2) That unoptimized code results in 1 + 100 * 10 + 8 = 1009 instructions for a 100 iteration loop.

The key observation is that there are only three bounds checking cases that are possible:

i < 0? i < save.length bounds OK?
1 1 No
0 1 Yes
0 0 No

Here is the optimized version with only a single branch or jump (one for the bounds checking and
another one for the loop test) in each iteration of the loop:

 lw $t2, 4($s6) # this is the length of "save"
 loop: slt $t0, $s3, $zero # 1 means i < 0
 slt $t1, $s3, $t2 # 1 means i < save.length
 beq $t0, $t1, except # index out of bounds
 sll $t1, $s3, 2 # 4*i
 add $t1, $t1, $s6 # &save[i] - 8
 lw $t0, 8($t1) # load save[i]
 addi $s3, $s3, 1 # i++ (gamble that I need this)
 beq $t0, $s5, loop # save[i] == k?
 exit: addi $s3, $s3, -1 # i-- to account for my gamble

This optimized code results in 1 + 101 * 8 + 1 = 810 instructions for a 100 iteration loop.

3) addi $t6, $zero, 101 # the loop termination value
 add $t0, $zero, $zero # i = 0
 addi $t2, $a0, 0 # ptr to current A[i]
 addi $t3, $a1, 0 # ptr to current B[i]
 loop: lw $t4, 0($t3) # load B[i]
 add $t4, $t4, $s0 # B[i] + c
 sw $t4, 0($t2) # store in A[i]
 addi $t0, $t0, 1 # i++
 addi $t2, $t2, 4 # ptr to next A[i]
 addi $t3, $t3, 4 # ptr to next B[i]

 bne $t0, $t6, loop # if i < 101, goto loop

The number of instructions executed is 4 + 7 * 101 = 711. Note: I tried to be a "smart compiler".
I know that the loop runs at least once (since 0 <= 100) and I also know that "less than or equal to
100" is the same as "less than 101" when the loop index is an integer, and I saved this value in a
register so I could do the test and branch at the same time.

4) atoi in MIPS

atoi: addi $t0, $a0, 0 # copy ptr "p" into $t0
 addi $v0, $zero, 0 # clear $v0 (the result)
 addi $t3, $zero, 10 # put 10 into $t3 (for mult later)
loop: lb $t1, 0($t0) # load current byte (char)
 beq $t1, $zero, done # test for '\0'
 addi $t1, $t1, -48 # adjust ASCII values '0' -> 0
 slti $t2, $t1, 0 # is value < 0?
 bne $t2, $zero, fault # yes, prepare to exit
 slti $t2, $t1, 10 # is value < 10?
 beq $t2, $zero, fault # no, prepare to exit
 mul $v0, $v0, $t3 # value *= 10 (this is a pseudoinst)
 add $v0, $v0, $t1 # value += digit
 addi $t0, $t0, 1 # ptr++
 j loop # try next next byte
fault: addi $v0, $zero, -1 # fault value
done: jr $ra # return

	EC 362 Problem Set #1
	Solutions to Problem Set #1

