
EC 362 Problem Set #1

1) Using the following MIPS program, determine the instruction format for each instruction and the HEX
values of each instruction field. Fill in the table below with those values:

 addi $v0, $zero, 0 # count = 0
 loop: lw $v1, 0($a0) # load word
 addi $v0, $v0, 1 # count++
 sw $v1, 0($a1) # store word
 addi $a0, $a0, 4 # ptr to next src
 addi $a1, $a1, 4 # ptr to next dest
 bne $v1, $zero, loop # loop if copied word is not 0
 addi $v0, $v0, -1 # count--

Instr Opcode Rs Rt Addr/immed
Addi
Lw

Addi
Sw

Addi
Addi
Bne
Addi

2) Consider the following Java code segment:

 while (save[i] == k) {
 i = i + 1;
 }

An inefficient Java translation of this into MIPS might result in assembly code that uses both a
conditional branch (for the conditional test) and an unconditional jump (for the repeat of the while)
each time through the loop, in addition to the array bounds checking tests required by Java. For
example, if the base address of the array save is in register $s6, i is stored in register $s3, and k is
stored in register $s5, then one possible inefficient MIPS code sequence would be

 lw $t2, 4($s6) this is the length of "save"
 loop: slt $t1, $s3, $zero 1 means i < 0
 bne $t1, $zero, except index out of bounds
 slt $t1, $s3, $t2 1 means i < save.length
 beq $t1, $zero, except index out of bounds
 sll $t1, $s3, 2 4*i
 add $t1, $t1, $s6 &save[i] - 8
 lw $t0, 8($t1) load save[i]
 bne $t0, $s5, exit save[i] != k?
 addi $s3, $s3, 1 i++
 j loop
 exit:

Note that Java Arrays store the length of the array in position $s6 + 4 and then the array itself starts
at position $s6 + 8.

Only poor compilers would produce code with such excessive loop overhead (3 branches + 1 jump).
Write a version of the assembly code for this segment so that it uses at most two branches/jumps (total)
each time through the loop. Please note that regardless of the optimization you perform, Java still
requires that the array index be "bounds checked" for 0 ≤ i < save.length in every iteration! How many
instructions are executed before and after the optimization if the number of loop iterations is 100.

3) Consider the following fragment of C code:

 for (i = 0; i <= 100; i++) {
 a[i] = b[i] + c;
 }

Assume that a and b are arrays of words and the base address of a is in $a0 and the base address of b
is in $a1. Register $t0 is associated with variable i and register $s0 with variable c. Write efficient
MIPS code for this segment. How many instructions are executed during the running of this code?

4) Write a MIPS assembly language function to implement the C / C++ atoi (ASCII to integer)

function. The function prototype for atoi is as follows:

int atoi(const char *p);

atoi converts an ASCII decimal string pointed to by the variable p into its corresponding integer
value. For example, atoi("24") would pass a pointer to the three byte sequence 50 (the ASCII
decimal value for '2'), 52 (the ASCII decimal value for '4'), 0 (the ASCII decimal value for '\0' which is
the string termination value) which represents '2', '4', '\0'. The result would then be the integer 24
(decimal). The program need not handle negative numbers, but if any non-digit character appears in
the string, your program should exit with a return value of -1. You may use the MUL pseudo-
instruction if needed. Use spim to test your function!

	EC 362 Problem Set #1

