
EC 362 Problem Set #2 
 
 

1) MIPS has one of the simpler instruction sets in existence.  However, it is possible to imagine even simpler 
instruction sets.  Consider a hypothetical machine call SIC, for Single Instruction Computer.  As its name 
implies, SIC has only one instruction:  subtract and branch if negative, or sbn for short.  The sbn instruction 
has three operands, each consisting of the address of a word in memory: 

 
sbn a, b, c   # Mem[a] = Mem[a] - Mem[b]; if (Mem[a]<0) go to c 

 
The instruction will subtract the number in memory location b from the number in location memory location a 
and place the result back in memory location a, overwriting the previous value.  If the result is greater than or 
equal to 0, the computer will take its next instruction from the memory location just after the current instruction.  
If the result is less than 0, the next instruction is taken from memory location c.  SIC has no registers and no 
instructions other than sbn. 

 
Although it has only one instruction, SIC can imitate many of the operations of more complex instruction sets 
by using clever sequences of sbn instructions.  For example, here is a program to copy a number from location 
a to location b: 

 
start:  sbn  temp, temp, .+1 #  Sets  temp  to  zero 
  sbn  temp, a, .+1  #  Sets   temp  to  -a 
  sbn  b, b, .+1  #  Sets  b  to  zero 
  sbn  b, temp, .+1  #  Sets  b  to  -temp, which is a 

 
In the program above, the notation .+1 means “the address after this one,” so that each instruction in this 
program goes on to the next in sequence whether or not the result is negative.  We assume temp to be the 
address of a spare memory word that can be used for temporary results. 

 
Part a) Write a SIC program to add a and b, leaving the result in a and leaving b unmodified. Your SIC program 
should only require 3 instructions. 

 
Part b) Write a SIC program to multiply a by b, putting the result in c.  Assume that memory location "one" 
contains the number 1.  Assume that a and b are greater than 0 and that it’s OK to modify a or b.  (Hint:  What 
does this program compute?) 

 
c = 0;  while (b > 0) {b = b – 1; c = c + a;} 

 
Your SIC program should only require 5 instructions. 

 
2) This problem compares the memory efficiency of four different styles of instruction sets for two code 

sequences.  The architecture styles are the following: 
 

• Accumulator: All operations occur in a single register called the accumulator (acc).  
• Memory-memory:  All three operands of each instruction are in memory. 
• Stack:  All operations occur on top of the stack.  Only push and pop access memory, and all other 

instructions remove their operands from the stack and replace them with the result.  The implementation 
uses a stack for the top two entries; accesses that use other stack positions are memory references. 

• Load-store:  All operations occur in registers, and register-to-register instructions have three operands per 
instruction. There are 16 general-purpose registers, and register specifiers are 4 bits long. This is the 
architecture style for MIPS (but slightly modified). 

 
Consider the following C code:   

 



a = b + c;     # a, b, and c are variables in memory 
 

This code would be translated as follows using an accumulator style instruction set. Notice that all operations 
implicitly reference the acc register, and everything else is a memory reference: 

 
load B # acc  Memory[B] 
add C # acc  acc + Memory[C] 
store A # Memory[A]  acc 

 
The same code would be translated as follows using a memory-memory instruction set: 
 

add A, B, C # Memory[A]  Memory[B] + Memory[C] 
 
In this case, there are no registers, just memory locations. So, all references are to memory.  The same code 
would be translated as follows using a stack instruction set: 
 

push C # top+=4; stack[top]  Memory[C] 
push B # top+=4; stack[top]  Memory[B] 
add  # stack[top-4]  stack[top] + stack[top-4]; top-=4 
pop A # Memory[A]  stack[top]; top-=4 

 
Here all operations act on the elements on the top of a stack. Again, there are no registers, just a stack. 
Everything else is a memory reference. 
 
Finally, the load-store translation would be: 
 

load reg1, C  # reg1  Memory[C] 
load reg2, B  # reg2  Memory[B] 
add reg3, reg1, reg2 
store reg3, A  # Memory[A]  reg3 

 
These are each equivalent assembly language code segments for the different styles of instruction sets.  For a 
given code sequence, we can calculate the instruction bytes fetched and the memory data bytes transferred using 
the following assumptions about all four instruction sets: 
 
• The opcode is always 1 byte (8 bits) 
• All memory addresses are 2 bytes (16 bits) 
• All memory data transfers are 4 bytes (32 bits) 
• All instructions are an integral number of bytes in length 
• There are no optimizations to reduce memory traffic 

 
For example, a register load in the load-store ISA will require four instruction bytes (one for the opcode, one for 
the register destination, and two for a memory address) to be fetched from memory along with four data bytes.  
A memory-memory add instruction will require seven instruction bytes (one for the opcode and two for each of 
the three memory addresses) to be fetched from memory and will result in 12 data bytes being transferred (eight 
from memory to the processor and four from the processor back to memory).  The following table displays a 
summary of this information for each of the architectural styles for the code appearing above: 

 
Style Instructions for a=b+c Code bytes Data bytes 

Accumulator 3 3+3+3 4+4+4 
Memory-memory 1 7 12 
Stack 4 3+3+1+3 4+4+0+4 
Load-store 4 4+4+3+4 4+4+0+4 

 



For the following C code, write an equivalent assembly language program in each architectural style (assume all 
variables are initially in memory): 

 
 a = b + c; 
 b = a + c; 
 d = a – b; 
 

Assume that the stack instruction set has instructions such as push, pop, add, sub, negate (computes the unary 
"minus" of the element on the top of the stack), and duplicate (makes a copy of the top of the stack), and assume 
that the accumulator instruction set has instructions such as load, store, add, sub, and negate. 
 
For each code sequence, calculate the instruction bytes fetched and the memory data bytes transferred (read or 
written).  Be efficient in writing your code, i.e. write the code as efficiently as you can so as to minimize the 
memory traffic. Which architecture is most efficient as measured by code size?  Which architecture is most 
efficient as measured by total memory bandwidth required (code + data)?  If the answers are not the same, why 
are they different? 

 
3) Consider two different implementations, M1 and M2, of the same instruction set.  There are three classes of 

instructions (A, B, and C) in the instruction set.  M1 has a clock rate of 4 GHz, and M2 has a clock rate of 2 
GHz.  The average number of cycles for each instruction class on M1 and M2 is given in the following table. 

 
Class CPI on M1 CPI on M2 C1 usage C2 usage Third-Party usage 

A 4 2 30% 30% 50% 
B 6 4 50% 20% 30% 
C 8 3 20% 50% 20% 

 
The table also contains a summary of how three different compilers use the instruction set.  C1 is a compiler 
produced by the makers of M1, C2 is a compiler produced by the makers of M2, and the other compiler is a 
third-party product.  Assume that each compiler uses the same number of instructions for a given program but 
that the instruction mix is as described in the table.  Using C1 on both M1 and M2, how much faster can the 
makers of M1 claim that M1 is compared with M2?  Using C2 on both M2 and M1, how much faster can the 
makers of M2 claim that M2 is compared with M1?  If you purchase M1, which compiler would you use?  
Which machine would you purchase if we assume that all other criteria are identical, including costs? 

 



 

Solutions to Problem Set #2 
 
1a) sbn temp, temp, .+1 # temp = 0 
 sbn temp, b, .+1 # temp = -b 
 sbn a, temp, .+1 # a = a – temp = a + b 
 
1b) sbn temp, temp, .+1 # temp = 0 
 sbn b, one, .+2 # if b < 1 jump +2.  either way b=b-1 
 sbn temp, a, .-1 # temp = temp – a, go back 1 instruction 
 sbn c, c, .+1 # c = 0 
 sbn c, temp, .+1 # c = c – temp = b*a 
 
2)  
 

Acc Code Data 
Load b 3 4 
Add c 3 4 
Store a 3 4 
Add c 3 4 
Store b 3 4 
Neg  1 0 
Add a 3 4 
Store d 3 4 
Total 22 28 

 
Total memory traffic = 50 bytes. 

 
Mem/mem Code Data 
Add a,b,c 7 12 
Add b,a,c 7 12 
Sub d,a,b 7 12 
Total 21 36 

 
Total memory traffic = 57 bytes. 

 
For stack operations, I’ll assume that the sub operation computes A-B where B is on top of A on the stack. 

 
Stack Code Data 
Push b 3 4 
Push c 3 4 
Add 1 0 
Dup 1 0 
Pop a 3 4 
Push c 3 4 
Add 1 0 
Dup 1 0 
Pop b 3 4 
Neg 1 0 
Push a 3 4 
Add 1 0 
Pop d 3 4 
Total 27 28 

 



Total memory traffic = 55 bytes. 
 

Load/store Code Data 
Load regB,b 4 4 
Load regC,c 4 4 
Add regA,regB,regC 3 0 
Store regA,a 4 4 
Add regB,regA,regC 3 0 
Store regB,b 4 4 
Sub regD,regA,regB 3 0 
Store regD,d 4 4 
Total 29 20 

 
Total memory traffic = 49 bytes. 
 
The load/store machine has the least memory traffic since everything can be held in registers, once fetched from 
memory. Of course, it has the largest code size since it cannot combine memory ops with arithmetic. On the 
other extreme is the mem/mem architecture which has the best code size, but terrible memory traffic since 3 
operands are fetched for every statement! 

 
3) Cpu = IC * CPI / Rate 

 
RateM1 = 4 GHz = 4e9 Hz 
RateM2 = 2 GHz = 2e9 Hz 

 
Class CPI on M1 CPI on M2 C1 usage C2 usage Third-Party usage 

A 4 2 30% 30% 50% 
B 6 4 50% 20% 30% 
C 8 3 20% 50% 20% 
 

We are told that the instruction counts (IC) are the same for each compiler on each machine. 
 

CPIC1,M1 = (4 * .3 + 6 * .5 + 8 * .2) = 5.8 
CPIC1,M2 = (2 * .3 + 4 * .5 + 3 * .2) = 3.2 
CPIC2,M1 = (4 * .3 + 6 * .2 + 8 * .5) = 6.4 
CPIC2,M2 = (2 * .3 + 4 * .2 + 3 * .5) = 2.9 
CPIC3,M1 = (4 * .5 + 6 * .3 + 8 * .2) = 5.4 
CPIC3,M2 = (2 * .5 + 4 * .3 + 3 * .2) = 2.8 
 
PerfC1,M1 / PerfC1,M2 = CpuC1,M2 / CpuC1,M1 = (IC * 3.2/2e9) / (IC * 5.8/4e9) = 16ns / 14.5ns= 1.10, so that M1 is 
1.1 times faster than M2 using compiler C1. 
 
PerfC2,M2 / PerfC2,M1 = CpuC2,M1 / CpuC2,M2 = (IC * 6.4/4e9) / (IC * 2.9/2e9) = 16ns / 14.5ns = 1.10, so that M2 is 
1.1 times faster than M1 using compiler C2. 
 
PerfC3,M1 / PerfC3,M2 = CpuC3,M2 / CpuC3,M1 = (IC * 2.8/2e9) / (IC * 5.4/4e9) = 14ns / 13.5ns = 1.03, so that M1 is 
1.03 times faster than M2 using C3. 
 
If you own M1, you should use C3.  If you own M2, you should use C3 also.  This is poor news for the “native” 
compiler writers of these two machines!  You should always use C3 as your compiler, and if you buy a 
machine, buy M1. 

 


	EC 362 Problem Set #2
	Solutions to Problem Set #2

