
EC 362 Problem Set #3

1) Describe the effect that a single stuck-at-0 fault (i.e. regardless of what it should be, the signal is
always 0) would have on the multiplexors in the single-cycle datapath in the figure below. Which
instructions, if any, would still work? Consider each of the following faults separately: RegDst = 0,
ALUSrc = 0, Mem2Reg = 0, Zero = 0.

2) Suppose we wanted to add the instruction jal (jump and link) to the single-cycle datapath. Add any

necessary datapaths and control signals to the figure below to implement this instruction.

3) Suppose we wanted to add the instruction bne to the single-cycle datapath. Add any necessary

datapaths and control signals to the figure below to implement this instruction.

4) Suppose we wanted to add a variant to the lw instruction, which sums two registers to obtain the

address of the data to be loaded and uses the R format (e.g. lw $t0, $t1($t2) means load into
$t0 the value at memory address $t1+$t2), to the single-cycle datapath. Add any necessary datapaths
and control signals to the figure below to implement this instruction.

5) Explain why it is not possible to modify the single-cycle implementation to implement the swap

instruction (e.g. swap $t0, $t1) without modifying the register file.

6) Consider a modification to the ISA that removes the ability to specify an offset for memory access

instructions. Specifically, all load/store instructions with nonzero offsets would become
pseudoinstructions and would be implemented using two instructions. For example, to implement lw
$t0, 104($t1), we would instead use:

addi $at, $t1, 104
lw $t0, $at

Add and delete any necessary datapaths and control signals to the figure below to implement this
modification to the ISA.

Solutions to Problem Set #3

1) RegDst = 0: Instructions that require the "destination" register to be determined by "rd" will fail,

since it will be stuck on "rt" instead. All R-type instructions will fail!

ALUSrc = 0: Instructions that require the second operand to the ALU be from the "addr/imm"
field will fail, since all such operands will come from the register file instead. All I-type
instructions (except branches) will fail!

Mem2Reg = 0: Instructions that require a read from memory will fail since all results will come
from the ALU instead. Anything related to lw will fail!

Zero = 0: PCSrc will be stuck at 0 also which means that all conditional branches will fail.
Sequential execution only in this case!

2) jal requires a new datapath in order to save the return address. We must store PC+4 in register $ra

(which is number 31). So we must connect PC+4 to the "write data" input of the register file using
a new MUX controlled by a new signal I'll call "LinkReg" (always 0 except in this case). We
must also force the "write register" address input to the register file to be "11111" (31 decimal) but
only in this case. Another MUX inserted between the RegDst MUX and the register file and
controlled by the same LinkReg signal will work. So we need the following control signals set:

RegDst = X
Branch = X
MemRead = 0
Mem2Reg = X
ALUOp = X (don't care)
MemWrite = 0
ALUSrc = X
RegWrite = 1
Jump = 1
LinkReg = 1

3) bne requires no new datapaths but does need to test the "opposite" of the line labeled "ZD" in

order to determine the result of the condition. Since beq and bne are “symmetric, I’ll replace the
old AND gate combining ZD with Branch, and in their place use a new MUX that looks like this,
with one new control signal labeled "BranchNE" (1 for bne and 0 otherwise):

Notice that ZD selects which port is to be queried. If ZD = 1 and the instruction was a beq, then a
1 would pass. If ZD = 0 and the instruction was a bne, then a 1 would pass in that case too. If the
instruction was neither beq nor bne, then 0 passes no matter what! Here are the control signals:

RegDst = X
Branch = 0
MemRead = 0
Mem2Reg = X

ALUOp = 110 (sub)
MemWrite = 0
ALUSrc = 0
RegWrite = 0
Jump = 0
BranchNE = 1

4) The new lw format (call it lw2 if you like) might look like this: lw2 $rd, $rt($rs). In this

case we need to add $rs and $rt (not the sign extended immediate as was the case for the original
lw), and use $rd as the destination, not $rt as with the normal lw instruction. No new datapaths
are required but we do need to set the control signals differently:

RegDst = 1
Branch = 0
MemRead = 1
Mem2Reg = 1
ALUOp = 010 (add)
MemWrite = 0
ALUSrc = 0
RegWrite = 1
Jump = 0

5) The register file has only a single “write data” input port, so only one register can have its contents

changed on every clock cycle. Swap would require 2 writes in a single cycle. The key point here is
that registers can only be written on an edge (usually negative) of a clock cycle, and if we have
only one cycle and only one input data port, then we’re stuck.

6) Removing the need to add an offset to a register for computing the effective address means that we

no longer need to connect the output of the ALU to the address input of the data RAM. Instead we
can hardwire the output of operand 1 (the rs operand) directly to both the ALU input 1 and to the
address input of the RAM. The control might also become simpler since some previous control
signals for lw will now be don’t care conditions (like ALUSrc).

	EC 362 Problem Set #3
	Solutions to Problem Set #3

