
EC 362 Problem Set #3

1) Describe the effect that a single stuck-at-0 fault (i.e. regardless of what it should be, the signal is
always 0) would have on the multiplexors in the single-cycle datapath in the figure below. Which
instructions, if any, would still work? Consider each of the following faults separately: RegDst = 0,
ALUSrc = 0, Mem2Reg = 0, Zero = 0.

2) Suppose we wanted to add the instruction jal (jump and link) to the single-cycle datapath. Add any

necessary datapaths and control signals to the figure below to implement this instruction.

3) Suppose we wanted to add the instruction bne to the single-cycle datapath. Add any necessary

datapaths and control signals to the figure below to implement this instruction.

4) Suppose we wanted to add a variant to the lw instruction, which sums two registers to obtain the

address of the data to be loaded and uses the R format (e.g. lw $t0, $t1($t2) means load into
$t0 the value at memory address $t1+$t2), to the single-cycle datapath. Add any necessary datapaths
and control signals to the figure below to implement this instruction.

5) Explain why it is not possible to modify the single-cycle implementation to implement the swap

instruction (e.g. swap $t0, $t1) without modifying the register file.

6) Consider a modification to the ISA that removes the ability to specify an offset for memory access

instructions. Specifically, all load/store instructions with nonzero offsets would become
pseudoinstructions and would be implemented using two instructions. For example, to implement lw
$t0, 104($t1), we would instead use:

addi $at, $t1, 104
lw $t0, $at

Add and delete any necessary datapaths and control signals to the figure below to implement this
modification to the ISA.

	EC 362 Problem Set #3

