
EC 362 Problem Set #4

1) Suppose we wish to add the new instruction wai (where am I) which puts the wai instruction's
location (the value in the PC when the instruction was fetched) into a register specified by the rt field
of the machine language instruction. Add any necessary datapaths and control signals to the multi-
cycle machine in the figure below to implement this instruction. Also show any modifications /
additions to the finite state machine diagram shown below.

2) Suppose we wish to add the new instruction jm (jump memory). Its instruction format is similar to lw,

except that the rt field is not used because the data loaded from memory is put into the PC instead of a
target register (ex: jm 104($t0) would jump to the instruction whose address is found in the memory
location 104+$t0). Add any necessary datapaths and control signals to the multi-cycle machine in the
figure below to implement this instruction. Also show any modifications / additions to the finite state
machine diagram shown below.

3) Using the following drawing, show the forwarding paths needed to execute the three instructions

shown:

add $2, $3, $4

add $4, $5, $6

Program
execution
order (in
instructions)

IF ID WBEX

IF ID MEMEX

Time
2 4 6 8 10

MEM

WBMEM

IF ID MEM WBMEMadd $5, $3, $4 EX

4) Modify the following code to make use a delayed branch slot, while retaining the same semantic intent.

loop: sw $2, 100($3)
 addi $3, $3, 4
 bne $3, $4, loop

5) Consider the following code to be scheduled on the standard MIPS pipeline.

loop: lw $t0, 0($s1)
 addu $t0, $t0, $s2
 sw $t0, 0($s1)
 addi $s1, $s1, -4
 bne $s1, $zero, loop

Unroll this code three times, assuming that the loop index is a multiple of four (i.e. $s1 is a multiple of
16). Reorder the code so that it can be scheduled on the standard MIPS pipeline (not superscalar) with
a minimum number of cycles. Use delayed branching in your unrolled solution, and assume that
branches are resolved in the decode stage.

S
hi

ft
le

ft
2

P
C

M
 u x0 1

R
eg

is
te

rs
W

rit
e

re
gi

st
er

W
rit

e
da

ta

R
ea

d
da

ta
 1

R
ea

d
da

ta
 2

R
ea

d
re

gi
st

er
 1

R
ea

d
re

gi
st

er
 2

In
st

ru
ct

io
n

[1
5–

11
]

M
 u x0 1

M
 u x0 1

4

In
st

ru
ct

io
n

[1
5–

0]

S
ig

n
ex

te
nd

32
16

In
st

ru
ct

io
n

[2
5–

21
]

In
st

ru
ct

io
n

[2
0–

16
]

In
st

ru
ct

io
n

[1
5–

0]
In

st
ru

ct
io

n
re

gi
st

er

AL
U

co
nt

ro
l

AL
U

re
su

lt
A

LU
Ze

ro

M
em

or
y

da
ta

re
gi

st
er

 A B

Io
rD

M
em

R
ea

d

M
em

W
rit

e

M
em

to
R

eg

P
C

W
rit

eC
on

d

P
C

W
rit

e

IR
W

rit
e

A
LU

O
p

AL
U

S
rc

B

A
LU

S
rc

A

R
eg

D
st

P
C

S
ou

rc
e

R
eg

W
rit

e
C

on
tro

l

O
ut

pu
ts

O
p

[5
–

0]

In
st

ru
ct

io
n

[3
1-

26
]

In
st

ru
ct

io
n

[5
–

0]

M

u x

0 2

Ju
m

p
ad

dr
es

s
[3

1-
0]

In
st

ru
ct

io
n

[2
5–

0]
26

28
S

hi
ft

le
ft

2

PC
 [3

1-
28

]

1

1
M
 u x

0 32M

u x0 1
AL

U
O

ut
M

em
or

y
M

em
D

at
a

W
rit

e
da

ta

Ad
dr

es
s

Solutions to Problem Set #4

1) wai needs no new datapaths, but two new states I'll call 10 and 11. State 10 follows state 1 and is

labeled wai. State 11 follows state 10 directly and then goes back to 0. In state 10, we need to
compute PC ← PC - 4 and put the result into ALUOut (automatically done). Then in state 11, we need
to route the PC - 4 value back to the register specified by the rt field.

State 10

ALUScrA = 0
ALUSrcB = 01
ALUOp = "sub"

State 11:

RegWrite = 1

2) jm should behave exactly like lw except that the value loaded from memory should be stored in the
PC, not in a register determined by rt. Hence we will need a new datapath that permits a value from
memory (which is held in the MDR at the conclusion of a read) to be routed to the PC via a new MUX
controlled by a signal I’ll call “Memjump” (always 0 except in this case). This MUX will be inserted
in the datapath after the PCSource MUX. The governing principle of “simplicity favors regularity”
would lead us to simply add a new state to the FSM numbered 10 and labeled jm that follows state 3 as
a branch option, since jm is really just like lw except for the destination of the memory value. That is,
when in state 3 you need to choose between state 4 (write-back step for load completion) and state 10
(complete jm). This instruction will be a 5 cycle instruction like lw.

State 10:
Memjump = 1
PCWrite = 1

3) The only data dependency is between instruction #2 (reg $4) and instruction #3 (reg $4), and this can

be forwarded from the EX stage of instruction #2 to the EX stage of instruction #3.

add $2, $3, $4

add $4, $5, $6

Program
execution
order (in
instructions)

IF ID WBEX

IF ID MEMEX

Time
2 4 6 8 10

MEM

WBMEM

IF ID MEM WBMEMadd $5, $3, $4 EX

4) loop: addi $3, $3, 4

 bne $3, $4, loop
 sw $2, 96($3)

5) Here is the unrolled code using delayed branching.

loop: lw $t0, 0($s1)
 lw $t1, -4($s1)
 lw $t2, -8($s1)
 lw $t3, -12($s1)
 addu $t0, $t0, $s2
 addu $t1, $t1, $s2
 addu $t2, $t2, $s2
 addu $t3, $t3, $s2
 addi $s1, $s1, -16
 sw $t0, 16($s1)
 sw $t1, 12($s1)
 sw $t2, 8($s1)
 bne $s1, $zero, loop
 sw $t3, 4($s1)
done:

There are no stalls in this code, no load stalls and no branch stalls. So, each iteration of this code
takes 14 cycles to complete.

	EC 362 Problem Set #4
	Solutions to Problem Set #4

