
EC 362 Problem Set #5

1) Consider the following code to be scheduled on the standard MIPS pipeline.

loop: lw $t0, 0($s1)
 addu $t0, $t0, $s2
 sw $t0, 0($s1)
 addi $s1, $s1, -4
 bne $s1, $zero, loop

Unroll this code twice, assuming that the loop index is a multiple of three (i.e. assume that $s1 is a
multiple of 12). Reorder the code so that it can be scheduled on the standard MIPS pipeline (not
superscalar) with a minimum number of cycles. Use delayed branching in your unrolled solution, and
assume that branches are resolved in the decode stage.

Use the following reference string of word addresses for the next five questions: 4, 5, 11, 12, 19, 20, 10, 11,
12, 4, 5, 9, 10. Use LRU as a block replacement policy when needed.

2) Assuming a direct mapped cache (initially empty) with 1-word blocks and a total size of 16 words,
label each reference in the list as a hit or a miss and show the final contents of the cache.

3) Assuming a direct mapped cache (initially empty) with 4-word blocks and a total size of 16 words,
label each reference in the list as a hit or a miss and show the final contents of the cache.

4) Assuming a 2-way set associative cache (initially empty) with 1-word blocks and a total size of 16
words, label each reference in the list as a hit or a miss and show the final contents of the cache.

5) Assuming a fully associative cache (initially empty) with one-word blocks and a total size of 16 words,
label each reference in the list as a hit or a miss and show the final contents of the cache.

6) Assuming a fully associative cache (initially empty) with 4-word blocks and a total size of 16 words,
label each reference in the list as a hit or a miss and show the final contents of the cache.

Solutions to Problem Set #5

1) Here is the unrolled code using delayed branching.

loop: lw $t0, 0($s1)
 lw $t1, -4($s1)
 lw $t2, -8($s1)
 addu $t0, $t0, $s2
 addu $t1, $t1, $s2
 addu $t2, $t2, $s2
 addi $s1, $s1, -12
 sw $t1, 12($s1)
 sw $t2, 8($s1)
 bne $s1, $zero, loop
 sw $t3, 4($s1)
done:

There are no stalls in this code, no load stalls and no branch stalls. So, each iteration of this code
takes 11 cycles to complete.

2)

Address 4 5 11 12 19 20 10 11 12 4 5 9 10

Hit/Miss M M M M M M M H H M H M H

Addr in cache = WordAddr / 1 % 16

Index Contents
0
1
2
3 19
4 4 20 4
5 5
6
7
8
9 9

10 10
11 11
12 12
13
14
15

3)

Address 4 5 11 12 19 20 10 11 12 4 5 9 10

Hit/Miss M H M M M M H H H M H H H

Addr in cache = WordAddr / 4 % 4

Index Contents
0 16:19
1 4:7 20:23 4:7
2 8:11
3 12:15

4)

Address 4 5 11 12 19 20 10 11 12 4 5 9 10

Hit/Miss M M M M M M M H H M H M H

Addr in cache = WordAddr / 1 % 8

Index Set1 Set2
0
1 9
2 10
3 11 19
4 4 20 4 12
5 5
6
7

5)

Address 4 5 11 12 19 20 10 11 12 4 5 9 10

Hit/Miss M M M M M M M H H H H M H

Contents
4
5

11
12
19
20
10
9

6)

Address 4 5 11 12 19 20 10 11 12 4 5 9 10

Hit/Miss M H M M M M H H H M H H H

Contents
4:7 20:23

8:11
12:15

16:19 4:7

	EC 362 Problem Set #5
	Solutions to Problem Set #5

