
A-1 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Appendix A: Digital Logic

Miles Murdocca
Rutgers, The State University

of New Jersey

A-2 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Topics

A.1 Combinational Logic
A.2 Truth Tables
A.3 Logic Gates
A.4 Properties of Boolean

Algebra
A.5 The Sum-of-Products Form

and Logic Diagrams
A.6 The Product-of-Sums Form
A.7 Positive versus Negative

Logic
A.8 The Data Sheet
A.9 Digital Components

A.10 Reduction of Two-Level
Expressions

A.11 Speed and Performance
A.12 Sequential Logic
A.13 J-K and T Flip-Flops
A.14 Design of Finite State

Machines
A.15 Mealy versus Moore

Machines
A.16 Registers
A.17 Counters

A-3 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Some Definitions

• Combinational logic: a digital logic circuit in which logical
decisions are made based only on combinations of the inputs
(e.g., an adder).

• Sequential logic: a circuit in which decisions are made based
on combinations of the current inputs as well as the past
history of inputs (e.g., a memory unit).

• Finite state machine: a circuit which has an internal state, and
whose outputs are functions of both current inputs and its
internal state (e.g., a vending machine controller).

A-4 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

The Combinational Logic Unit
• Translates a set of inputs into a set of outputs according to

one or more mapping functions.
• Inputs and outputs for a CLU normally have two distinct

(binary) values: high and low, 1 and 0, 0 and 1, or 5 v and 0 v,
for example.

• The outputs of a CLU are strictly functions of the inputs, and
the outputs are updated immediately after the inputs change. A
set of inputs i0–in are presented to the CLU, which produces a
set of outputs according to mapping functions f0–fm.

Fig A.1

i0
i1

in

f0
f1

fm

Combinational

logic unit

A-5 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Truth Tables
• Developed in 1854 by George Boole
• Further developed by Claude Shannon (Bell Labs)
• Outputs are computed for all possible input combinations

(how many input combinations are there?

Fig. A.2

Consider a room with two light switches. How must they work†?

Light Z

Switch BSwitch A

“Hot”

GND

A	 B	 Z

Inputs Output

0	 0	 0

0	 1	 1

1	 0	 1

1	 1	 0

†Don't show this to your electrician, or wire your house this way. This circuit
definitely violates the electric code. The practical circuit never leaves the lines
to the light "hot" when the light is turned off. Can you figure how?

A-6 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.4 Truth Tables Showing All Possible
Functions of Two Binary Variables

• The more frequently used functions have names: AND, XOR,
OR, NOR, XOR, and NAND. (Always use upper-case spelling.)

0

0

1

1

0

1

0

1

0

0

0

0

0

0

0

1

0

0

1

0

0

0

1

1

0

1

0

0

0

1

0

1

0

1

1

0

0

1

1

1

A B False AND A B XOR OR

0

0

1

1

0

1

0

1

1

0

0

0

1

0

0

1

1

0

1

0

1

0

1

1

1

1

0

0

1

1

0

1

1

1

1

0

1

1

1

1

A B NOR XNOR A + B NAND True

AB AB

B A A + B

A-7 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Logic Gates and Their Symbols

• Note the use of the “inversion bubble.”
• Be careful about the “nose” of the gate when drawing AND vs. OR.

Fig. A.5 Logic
Gate Symbols
for AND, OR,
Buffer, and
NOT Boolean
functions

A
B

F = AB
A
B

F = A + B

AND OR

F = A A

NOT (Inverter)

F = A A

Buffer

A	 B	 F

0	 0	 0

0	 1	 0

1	 0	 0

1	 1	 1

A	 F

0	 0

1	 1

A	 F

0	 1

1	 0

A	 B	 F

0	 0	 0

0	 1	 1

1	 0	 1

1	 1	 1

A-8 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.6 Logic Gate Symbols for NAND,
NOR, XOR, and XNOR Boolean functions

A
B

F = A B
A
B

F = A + B

NAND NOR

A
B

F = A + B
A
B

F = A B

Exclusive-OR (XOR) Exclusive-NOR (XNOR)

A	 B	 F

0	 0	 1

0	 1	 1

1	 0	 1

1	 1	 0

A	 B	 F

0	 0	 1

0	 1	 0

1	 0	 0

1	 1	 0

A	 B	 F

0	 0	 0

0	 1	 1

1	 0	 1

1	 1	 0

A	 B	 F

0	 0	 1

0	 1	 0

1	 0	 0

1	 1	 1

A-9 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.7 Variations of Basic Logic
Gate Symbols

(a) 3 inputs (b) A negated input (c) Complementary outputs

A
B F = ABC

A

B
A + B
A + B

(a) (b)

(c)

C

A
B

F = A + B

A-10 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.8 The Inverter at the
 Transistor Level

Transistor
symbol

Power
terminals A transistor used

as an inverter

(a) (b) (c) (d)

A A

Base
Emitter
Collector

GND = 0 V

VCC = +5 V
VCC

A

A

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0
0.2 0.4 0.6 0.8

Vin–Input voltage–V

V
ou

t–
O

ut
p

ut
 v

ol
ta

g
e–

V

Output voltage vs. Input voltage

1 1.2 1.4 1.6 1.8 20

Vout

VCC

Vin

RL

VCC = 5 V
RL = 400 Ω

Inverter transfer
function

A-11 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.9 Assignments of Logical 0
and Logical 1 to Voltage Ranges

Logical 1

Logical 0

+5 V

2.4 V

0.4 V
0 V

Logical 1

Logical 0

+5 V

2.0 V

0.8 V

0 V

Forbidden range Forbidden range

(a) At the output of a
logic gate

(b) At the input to a
logic gate

A-12 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

A.10 Transistor Circuits

B

V2

A

V1

B

V2

A

AB
Vout

A + B
Vout

VCC

V1

VCC

(a) A two-input NAND gate (b) A two-input NOR gate

A-13 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Tbl A.1 The Basic Properties of
Boolean Algebra

A B = B A

A (B + C) = A B + A C

1 A = A

A A = 0

0 A = 0

A A = A

A (B C) = (A B) C

A + B = B + A

A + B C = (A + B) (A + C)

0 + A = A

1 + A = 1

A + A = 1

A + A = A

A + (B + C) = (A + B) + C

Commutative

Distributive

Identity

Inverse

Associative

A B = A + B A + B = A B
DeMorgan’s
Theorem

PropertyRelationship Dual

Null

Idempotence

A = A Complement

Consensus
Theorem

(A+ B)(A+ C)(B + C)

= (A + B)(A+ C)

AB+ AC + BC

= AB+ AC

Postulates

Theorems

A, B, etc. are
Literals; 0 and
1 are
constants.

Principle of duality: The
dual of a Boolean
function is gotten by
replacing AND with OR
and OR with AND,
constant 1s by 0s, and
0s by 1s

A-14 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

DeMorgan’s Theorem

0
0
1
1

0
1
0
1

A B

1
1
1
0

1
1
1
0

1
0
0
0

1
0
0
0

= =A B A + B A + B A B

Discuss: Applying DeMorgan’s theorem by “pushing the bubbles”
and “bubble tricks.”

A

B
F = A B

A + B = A + B = A BDeMorgan’s theorem:

A
B

F = A + B

Fig A.12

Fig A.11

A-15 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

The Sum-of-Products (SOP) Form

• Transform the function into a two-level AND-OR equation
• Implement the function with an arrangement of logic gates

from the set {AND, OR, NOT}
• M is true when A = 0, B = 1, and C = 1, or when A = 1, B = 0,

and C = 1, and so on for the remaining cases.
• Represent logic equations by using the sum-of-products (SOP)

form

Fig. A.14 Truth
Table for the
Majority Function

A	 B	 C	 FMinterm

Index

0	 0	 0	 0

0	 0	 1	 0

0	 1	 0	 0

0	 1	 1	 1

1	 0	 0	 0

1	 0	 1	 1

1	 1	 0	 1

1	 1	 1	 1

0

1

2

3

4

5

6

7

1

0

0-side 1-side

0

A balance tips to the left or
right depending on whether

there are more 0’s or 1’s.

A-16 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

The SOP Form of the Majority Gate

• The SOP form for the 3-input majority gate is:

• M = ABC + ABC + ABC + ABC = m3 + m5 +m6 +m7 = Σ (3, 5, 6, 7)

• Each of the 2n terms are called minterms, running from 0 to 2n - 1

• Note the relationship between minterm number and Boolean value.
• Discuss: common-sense interpretation of equation.

A-17 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.15 A Two-Level AND-OR Circuit
Implements the Majority Function

Discuss: what is the gate count?

F

BA

A B C

A B C

A B C

A B C

C

A-18 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.16 Four Notations Used at
Circuit Intersections

Connection No connection

Connection No connection

A-19 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.17 A Two-Level OR-AND Circuit
that Implements the Majority Function

F

BA

A + B + C

A + B + C

A + B + C

A + B + C

C

A-20 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Positive versus Negative Logic
•Positive logic: truth, or assertion is represented by logic 1, higher voltage;
falsity, de- or unassertion, logic 0, is represented by lower voltage.
•Negative logic: truth, or assertion is represented by logic 0 , lower voltage;
falsity, de- or unassertion, logic 1, is represented by lower voltage

Gate Logic: Positive vs. Negative Logic

Normal Convention: Postive Logic/Active High
Low Voltage = 0; High Voltage = 1

Alternative Convention sometimes used: Negative Logic/Active Low

Behavior in terms
of Electrical Levels

Two Alternative Interpretations
Positive Logic AND
Negative Logic OR

Dual Operations

Negative LogicPositive LogicVoltage Truth T able

F
low
low
low
high

F
0
0
0
1

F
1
1
1
0

A
low
low
high
high

B
low
high
low
high

B
0
1
0
1

A
0
0
1
1

A
1
1
0
0

B
1
0
1
0

F

A-21 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.18 Positive and Negative
Logic Assignments

A
B

F = A B

Positive logic levelsVoltage levels Negative logic levels

A
B

F = A + B
A
B

F
Physical

AND gate

A
B

F = A B

Positive logic levelsVoltage levels Negative logic levels

A
B

F = A + B
A
B

F
Physical

NAND gate

A	 B	 F

0	 0	 0

0	 1	 0

1	 0	 0

1	 1	 1

	 A	 B	 F

low	 low	 low

low	 high	 low

high	 low	 low

high	 high	 high

A	 B	 F

1	 1	 1

1	 0	 1

0	 1	 1

0	 0	 0

A	 B	 F

0	 0	 1

0	 1	 1

1	 0	 1

1	 1	 0

	 A	 B	 F

low	 low	 high

low	 high	 high

high	 low	 high

high	 high	 low

A	 B	 F

1	 1	 0

1	 0	 0

0	 1	 0

0	 0	 1

A-22 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Bubble Matching

• Active-low signals are signified by a prime or overbar or /.
• Active high: enable
• Active low: enable′, enable, enable/
• Discuss microwave oven control:

• Active high: Heat = DoorClosed • Start
• Active low: ? (Hint: begin with AND gate as before)

A-23 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig. A.19 The Process of Bubble
Matching

Positive logic x0
Positive logic x1

Negative logic x0
Negative logic x1

Negative logic x0

Negative logic x1

Negative logic x0
Negative logic x1

Positive

logic

Negative

logic

Negative

logic

(b)(a)

(c) (d)

Negative

logic

Bubble mismatch

Bubble match

Bubble match

A-24 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Digital Components

• High-level digital circuit designs are normally made using
collections of logic gates referred to as components, rather
than using individual logic gates. The majority function can be
viewed as a component.

• Levels of integration (numbers of gates) in an integrated
circuit (IC):

• Small-scale integration (SSI): 10–100 gates.
• Medium-scale integration (MSI): 100–1000 gates.
• Large-scale integration (LSI): 1000–10,000 logic gates.
• Very large scale integration (VLSI): 10,000–upward.

• These levels are approximate, but the distinctions are useful in
comparing the relative complexity of circuits.

• Let us consider several useful MSI components.

A-25 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.20
Simplified
Data Sheet

SN7400 QUADRUPLE 2-INPUT POSITIVE-NAND GATES

description

absolute maximum ratings

logic diagram (positive logic)

recommended operating conditions

Supply voltage, VCC
Input voltage:
Operating free-air temperature range:
Storage temperature range

7 V
5.5 V

0˚C to 70˚C
– 65˚C to 150˚C

function table (each gate)

INPUTS
A	 B	 Y

H	 H	 L
L	 X	 H
X	 L	 H

1A

1B

1Y

2A

2B

2Y

GND

1A

1B

1Y

VCC

4B

4A

4Y

3B

3A

3Y

1

2

3

4

5

6

7

14

13

12

11

10

9

8

OUTPUT

package (top view)

schematic (each gate)These devices contain four independent
2-input NAND gates.

VCC	 Supply voltage

VIH	 High-level input voltage

VIL	 Low-level input voltage

IOH	 High-level output current

IOL	 Low-level output current

TA	 Operating free-air temperature

4.75

2

0

5 5.25

0.8

– 0.4

16

70

V

V

V

mA

mA

˚C

MIN NOM MAX UNIT

11

7

22

15

ns

ns

MINTEST CONDITIONSTO (output)FROM (input)PARAMETER NOM MAX UNIT

Y

GND

A
B

VCC

130 Ω1.6 kΩ

1 kΩ

4 kΩ

electrical characteristics over recommended operating free-air temperature range

switching characteristics, VCC = 5 V, TA = 25˚ C

VALUE OPERATING CONDITIONS

VOH	 VCC = MIN, VIL = 0.8 V, IOH = – 0.4 mA

VOL	 VCC = MIN, VIH = 2 V, IOL = 16 mA

IIH	 VCC = MAX, VI = 2.4 V

IIL	 VCC = MAX, VI = 0.4 V

ICCH	 VCC = MAX, VI = 0 V

ICCL	 VCC = MAX, VI = 4.5 V

tPLH

tPHL

RL = 400 Ω
CL = 15 pF

A or B Y

2.4 3.4

0.2

4

12

0.4

40

– 1.6

8

22

V

V

µA

mA

mA

mA

MIN TYP MAX UNIT

2A

2B

2Y

3A

3B

3Y

4A

4B

4Y

Y = A B

A-26 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

The Multiplexer
Fig A.21 Block Diagram and Truth Table

F

A	 B	 F

D
at

a
in

p
ut

s

0	 0	 D 0

0	 1	 D 1

1	 0	 D 2

1	 1	 D 3
A	 B

Control inputs

D0

D1

D2

D3

F = A B D0 + A B D1 + A B D2 + A B D3

00

01

10

11

F

BA

D1

D2

D3

D0

Fig A.22 AND-OR Circuit Implementation

A-27 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.23 An 8-1 MUX Implements
the Majority Function

Principle: Use the MUX select to pick out the selected minterms of the function.

F

A	 B	 C	 M

0	 0	 0	 0

0	 0	 1	 0

0	 1	 0	 0

0	 1	 1	 1

1	 0	 0	 0

1	 0	 1	 1

1	 1	 0	 1

1	 1	 1	 1

A B C

0

0

0

1

0

1

1

1

000

001

010

011

100

101

110

111

A-28 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.24 A 4-1 MUX Implements a
3-Variable Function

Principle: Use the A and B inputs to select a pair of minterms. The
value applied to the MUX input is selected from {0, 1, C, C} to pick
the desired behavior of the minterm pair.

F

A	 B	 C	 F

0	 0	 0	 0

0	 0	 1	 0

0	 1	 0	 1

0	 1	 1	 1

1	 0	 0	 0

1	 0	 1	 1

1	 1	 0	 1

1	 1	 1	 0
A B

0
0

1

C

C

00

01

10

11
1

C

C

A-29 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

The Demultiplexer (DEMUX)

D

F0 = D A B F2 = D A B

F1 = D A B F3 = D A B

D	 A	 B	 F 0	 F1	 F2	 F3	

0	 0	 0	 0	 0	 0	 0

0	 0	 1	 0	 0	 0	 0

0	 1	 0	 0	 0	 0	 0

0	 1	 1	 0	 0	 0	 0

1	 0	 0	 1	 0	 0	 0

1	 0	 1	 0	 1	 0	 0

1	 1	 0	 0	 0	 1	 0

1	 1	 1	 0	 0	 0	 1

A B

F0

F1

F2

F3

00

01

10

11

Fig A.25 Block Diagram and Truth Table

A-30 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

The Demultiplexer Is a Decoder
with an Enable Input

Compare to Fig A.28

D

BA

F1

F2

F3

F0

Enable

D0 = A B D2 = A BD1 = A B D3 = A B

Enable = 1

A	 B	 D 0	 D1	 D2	 D3

0	 0	 1	 0	 0	 0

0	 1	 0	 1	 0	 0

1	 0	 0	 0	 1	 0

1	 1	 0	 0	 0	 1

A

B

D0

D1

D2

D3

00

01

10

11

Enable = 0

A	 B	 D 0	 D1	 D2	 D3

0	 0	 0	 0	 0	 0

0	 1	 0	 0	 0	 0

1	 0	 0	 0	 0	 0

1	 1	 0	 0	 0	 0

Fig A.27 Block Diagram and Truth Table

Fig A.26 A Circuit for a 1-4 DEMUX

A-31 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.28 An AND Circuit for a 2-4
Decoder

Enable

B
A

D1

D2

D3

D0

D

BA

F1

F2

F3

F0

Fig A.27

A-32 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.29 A 3-to-8 Decoder
Implements the Majority Function

M

A

B

C

000

001

010

011

100

101

110

111

A-33 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

The Priority Encoder
• An encoder translates a set of inputs into a binary encoding.
• Can be thought of as the converse of a decoder.
• A priority encoder imposes an order on the inputs.
• Ai has a higher priority than Ai+1.

F0 = A0A1A3 + A0A1A2

F1 = A0A2A3 + A0A1

A0	 A1	 A2	 A3	 F0	 F1

0	 0	 0	 0	 0	 0

0	 0	 0	 1	 1	 1

0	 0	 1	 0	 1	 0

0	 0	 1	 1	 1	 0

0	 1	 0	 0	 0	 1

0	 1	 0	 1	 0	 1

0	 1	 1	 0	 0	 1

0	 1	 1	 1	 0	 1

1	 0	 0	 0	 0	 0

1	 0	 0	 1	 0	 0

1	 0	 1	 0	 0	 0

1	 0	 1	 1	 0	 0

1	 1	 0	 0	 0	 0

1	 1	 0	 1	 0	 0

1	 1	 1	 0	 0	 0

1	 1	 1	 1	 0	 0

F0

F1

A0

A1

A2

A3

00

01

10

11 A1

A2

A3

A0

F1

F0

Fig A.30 Block Diagram and Truth Table

Fig A.31 Logic Diagram for a 4-to-2
Priority Encoder

A-34 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.32 A Programmable Logic Array

• A PLA is a
customizable AND
matrix followed by a
customizable OR
matrix

A B C

OR matrix

AND matrix

F1F0

Fuses

A-35 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.33 Simplified Representation
of a PLA
A B C

A B C

F1F0

(Majority) (Unused)

A B C

A B C

A B C

A-36 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Using PLAs to Implement an Adder

Fig A.34 Black Box
Representation

A
B
C

F0

F1

PLA
Ai	 B i	 C i	 S i	 Ci+1 Bi

Ci

Full

adder

Ai

Ci+1
Si

0	 0	 0	 0	 0

0	 0	 1	 1	 0

0	 1	 0	 1	 0

0	 1	 1	 0	 1

1	 0	 0	 1	 0

1	 0	 1	 0	 1

1	 1	 0	 0	 1

1	 1	 1	 1	 1

Operand A
Operand B

0
0+

00

SumCarry
Out

0
1+

10

1
1+

01

Example:

Carry
Operand A

Operand B
Sum

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

+

Carry In 0 0

1
0+

10

0 0

0
0+

10

1

0
1+

01

1

1
0+

01

1

1
1+

11

1

Fig A.35 Addition for Two Unsigned Binary

Fig A.36 Truth
Table for a Full
Adder

A-37 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.37 A 4-Bit
Adder Implemented
with a Cascade of

Full Adders

Fig A.38 PLA
Realization of a

Full Adder

b3 c3

Full

adder

a3

c4
s3

b2 c2

Full

adder

a2

s2

b1 c1

Full

adder

a1

s1

b0 c0
0

Full

adder

a0

s0

A B Cin

CoutSum

A-38 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Reduction (Simplification) of
Boolean Expressions

• It may be possible to simplify the canonical SOP or POS forms.

• A smaller Boolean equation translates to a lower gate count in
the target circuit.

• We discuss two methods: algebraic reduction and Karnaugh
map reduction.

A-39 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

The Algebraic Method
Consider the majority function, F:

F = A BC + AB C + ABC + ABC

F = A BC + AB C + AB(C + C)

F = A BC + AB C + AB(1)

F = A BC + AB C + AB

F = A BC + AB C + AB + ABC

F = A BC + AC(B + B) + AB

F = A BC + AC + AB

F = A BC + AC + AB + ABC

F = BC(A + A)+ AC + AB

F = BC + AC + AB

Distributive property

Complement property

Identity property

Idempotence property

Identity property

Complement and identity properties

Idempotence property

Distributive property

Complement and identity properties

A-40 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.40 Venn Diagrams

Each distinct region in the “universe” represents a minterm.
This diagram can be transformed into a Karnaugh Map.

B

AABC

AB'CAB'C'ABC'

A'BC' A'B'C

A'BC A'B'C'
C

3 binary variables The majority function

A-41 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.41 A K-Map of the Majority
Function

The map contains all the minterms. Adjacent 1’s in the K-map
satisfy the complement property of Boolean algebra.

Place a “1” in each cell that has a that minterm.
Cells on the outer edge of the map “wrap around”

A	 B	 C	 FMinterm

Index

0	 0	 0	 0

0	 0	 1	 0

0	 1	 0	 0

0	 1	 1	 1

1	 0	 0	 0

1	 0	 1	 1

1	 1	 0	 1

1	 1	 1	 1

0

1

2

3

4

5

6

7

1

0

0-side 1-side

0

A balance tips to the left or
right depending on whether

there are more 0’s or 1’s.

00
AB

C

0

1

1

11 1

01 11 10

A-42 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.42 Adjacency Groupings for the
Majority Function

00
AB

C

0

1

1

11 1

01 11 10

M= BC + AC + AB

A-43 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

A.43 Minimized AND-OR Circuit for
the Majority Function

F

BA C

M= BC + AC + AB

A-44 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.44 Minimal and Not-Minimal
K-Map Groupings

00
AB

CD

F = ABC + ACD +

ABC + ACD

F = BD + ABC + ACD +

 ABC + ACD

00

01

11

10

1

2

1

4

3

1 1

1

1

11 1

01 11 10 00
AB

CD

00

01

11

10

1

3

2

1 5

4

1 1

1

1

11 1

01 11 10

A-45 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.45 The Corners of a K-Map
Are Logically Adjacent

00
AB

CD

F = BCD + BD + AB

00

01

11

10

11 1

1 1

1

1

1

1

01 11 10

A-46 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

A.46 Two Different Minimized Equations
Are Produced from the Same K-Map

00
AB

CD

F = BCD + BD

00

01

11

10

1 d

d

1 1

1 1

01 11 10 00
AB

CD

F = ABD + BD

00

01

11

10

1 d

d

1 1

11

01 11 10

A-47 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Speed and Performance

• The speed of a digital system is governed by

• the propagation delay through the logic gates and

• the propagation across interconnections.

A-48 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.47 Propagation Delay for a NOT Gate
(Adapted from Hamacher et al., 1990)

+5 V

0 V

+5 V

0 V

Transition

time

10%
The NOT gate

input changes

from 1 to 0

The NOT gate

output changes

from 0 to 1

Time

50%

(2.5 V)

90%

10%
50%

(2.5 V)

90%

(Fall time)

Propagation delay

(Latency)

Transition

time

(Rise time)

A-49 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Circuit Depth Affects Propagation Delay

F ABCD ABCD ABCD ABCD ABCD ABCD ABCD

BC BC AD BC BC AD BC BC

()

() () ()

= + + + + +

= + + + + +

M

1

0

0

1

0

1

1

0

0

1

0

0

0

0

0

1

F
F

A B C

B

BC + BC

BC + BC

C

A D

D

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

1

0

0

1

00

01

10

11

0

0

1

1

0

00

01

10

11

00

01

10

11

Fig A.48 A 4-Variable Function Implemented with a 16-to-1 MUX

A-50 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fan-in May Affect Circuit Depth

((A + B) + C) + DA + B + C + D = (A + B) + (C + D)

DCBABA DCBA DC

Degenerate tree

(A + B) + (C + D)

Balanced tree

Associative law of Boolean algebra:

A + B + C + D

Initial high fan-in gate

Fig A.49 A Logic Gate

A-51 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Sequential Logic

• The combinational logic circuits we have been studying so far
have no memory. The outputs always follow the inputs.

• There is a need for circuits with a memory, which behave
differently depending upon their previous state.

• An example is the vending machine, which must remember
how many and what kinds of coins have been inserted, and
which behave according to not only the current coin inserted,
but also upon how many and what kind of coins have been
deposited previously.

• These are referred to as finite state machines, because they
can have at most a finite number of states.

A-52 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.50 Classical Model of a
Finite State Machine

io

ik

Synchronization

signal

fo

State bits

fmCombinational

logic unit

Qn

sn

Delay elements (one per state bit)

Inputs Outputs

Dn

Q0

s0

D0

A-53 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

A.51 A NOR Gate with a Lumped
Delay

A

B

A
1

0

1

0

1

0

B

Timing behavior

∆τ

∆τ

A + B

A + B

This delay between input and output is at the basis of the functioning of
an important memory element, the flip-flop.

A-54 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

A.52 An S-R Flip-Flop

S
Q

S

R

Timing behavior

Q
R

2∆τ

∆τ

2∆τ

∆τ

Q

Q

Qt	 St	 Rt	 Qi+1

0	 0	 0	 0

0	 0	 1	 0

0	 1	 0	 1

0	 1	 1	 (disallowed)

1	 0	 0	 1

1	 0	 1	 0

1	 1	 0	 1

1	 1	 1	 (disallowed)

The S-R flip-flop is an active-high (positive logic) device.

A-55 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.53 Converting a NOR S-R
to an NAND S-R

S
Q

QR

S
Q

QR

Q
S

Q

QR

R

QS

Active-high
NOR
Implementation

Push bubbles
(DeMorgan’s)

Rearrange
bubbles

Convert
from bubbles
to active-low
signal names

A-56 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.54 A Circuit with a Hazard

SC

B

AB

Q

A

Q
R

S

R

C

B

A

AB

Timing behavior

2∆τ

∆τ

∆τ

Glitch caused by

a hazard

Q

Q

It is desirable to be able to “turn off”
the flip-flop so it does not respond to
such hazards.

A-57 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.55 A Clock Waveform

Cycle time = 25 ns

Time

A
m

p
lit

ud
e

In a positive logic system, the “action” happens when the clock
is high, or positive. The low part of the clock cycle allows
propagation between subcircuits, so their inputs are stable at the
correct value when the clock next goes high.

A-58 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

A.56 A Clocked S-R Flip-Flop

The clock signal, CLK, turns on the inputs to the flip-flop.

S

CLK

Q

Q

R

R

S

CLK

Timing behavior

3∆τ

2∆τ

Q

Q

A-59 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.57 A Clocked D (Data) Flip-Flop

D

CLK

Symbol

Q

Q

Circuit

D

CLK

Timing behavior

2∆τ

∆τ

2∆τ

∆τ

Q

Q

D Q

C Q

The clocked D flip-flop, sometimes called a latch, has a potential problem: If
D changes while the clock is high, the output will also change. The Master-
Slave flip-flop solves this problem.

A-60 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

A.58 A Master-Slave Flip-Flop

CLK

Symbol

D

CLK

Timing behavior

3∆τ 2∆τ

∆τ

2∆τ 2∆τ

∆τ

QS

QS

QM

D Q

Q

D QS

QS

DD QM

C C

Circuit
SlaveMaster

The rising edge of the clock clocks new data into the master, while the slave
holds previous data. The falling edge clocks the new master data into the
slave.

A-61 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.59 The Basic J-K Flip-Flop

• The J-L flip-flop eliminates the S = R = 1 problem of the S-R flip-flop,
because Q enables J while Q' disables K, and vice versa.

• However there is still a problem. If J goes momentarily to 1 and then
back to 0 while the flip-flop is active and in the reset, the flip-flop will
“catch” the 1.

• This is referred to as “1’s catching.”
• The J-K master-slave flip-flop solves this problem.

J

K

CLK

Symbol

Q

Q

Circuit

J Q

K Q

A-62 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.61 A Master-Slave J-K Flip-Flop

J

K

CLK

Symbol

Q

Q

Circuit

J Q

K Q

A-63 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.60 A T Flip-Flop

• The presence of a constant 1 at J and K means that the flip-
flop will change its state from 0-1 or 1-0 each time it is clocked
by the T (toggle) input.

Symbol

TT

1 Q

Q

Circuit

J

K

Q

Q

A-64 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.62 Negative Edge-Triggered
D Flip-Flop

• When the clock is high, the two input latches output 0, so the main
latch remains in its previous state regardless of changes in D.

• When the clock goes high-low, values in the two input latches will
affect the state of the main latch.

• While the clock is low, D cannot affect the main latch.

D

S

R

CLK

Stores D

Main latch

Stores D

Q

Q

Cycle time = 25 ns

Time

A
m

p
lit

ud
e

A-65 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Finite State Machine Design
• Counter has a clock input, CLK, and a RESET input.
• Has two output lines, which must take values of 00, 01, 10, and 11

on subsequent clock cycles.

It requires
two flip-flops
to store the
state.

0 1 1 0 0

4 3 2 1 0 Time (t)

0 0 0 0 1

Time (t) 4 3 2 1 0

0 1 0 1 02-bit

synchronous

counter

CLK

D
s1

Q

Q

D

s0

Q

Q

q0

q1

s0

s1

RESET

Fig A.63 A Modulo-4 Counter

A-66 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.64 State Transition Diagram for
a Modulo(4) Counter

• The state diagram and state table tell “all there is to know” about
the FSM, and are the basis for a provably correct design.

Next State
Present State RESET

 0 1
A B/01 A/00
B C/10 A/00
C D/11 A/00
D A/00 A/00

State
Table

Present State RESET
0 1

A:00 01 00
B:01 10 00
C:10 11 00
D:11 00 00

State
Table
With
States
Assigned

Output 00

state

Output 01

state

Output 10

state

Output 11

state

BA

DC

1/00

q1

RESET
0/01

1/00

0/11

0/10 0/00
1/00

1/00

q0

A-67 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.67 Truth Table

• Develop equations from this truth table for s0(t+1), s1(t+1),
q0(t+1), and q1(t+1) from inputs r(t), s0(t) and s1(t)

r(t) s1(t)s0(t) s1s0(t+1) q1q0(t+1)

0 00 01 01

0 01 10 10

0 10 11 11

0 11 00 00

1 00 00 00

1 01 00 00

1 10 00 00

1 11 00 00

A-68 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.67 Equations

 s t r t s t s t r t s t s t

s t r t s t s t r t s t s t

q t r t s t s t r t s t s t

q t

0 1 0 1 0

1 1 0 1 0

0 1 0 1 0

1

1

1

1

() () () () () () ()

() () () () () () ()

() () () () () () ()

(

+ = +

+ = +

+ = +

++ = +1 1 0 1 0) () () () () () ()r t s t s t r t s t s t

Implement these equations

A-69 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.68 Logic Design for a
Modulo(4) Counter

CLK

RESET

q1

q0

D
s1

Q

Q

D
s0

Q

Q

There are many simpler techniques for implementing counters.

A-70 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Example A.2: A Sequence Detector

• Design a machine that outputs a 1 when exactly 2 of the last 3
inputs are 1.

• e.g. input sequence of 011011100 produces an output
sequence of 001111010

• Assume input is a 1-bit serial line.
• Use D flip-flops and 8-1 multiplexers.
• Begin by constructing a state transition diagram.

A-71 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.69 State Transition Diagram for
Sequence Detector

B

C

A

D

E

F

G

0/0

0/0

1/0
0/0

1/0

1/0

0/0

1/1

1/1

0/0

1/0

0/1

1/0

0/0

• Design a
machine that
outputs a 1
when exactly
2 of the last 3
inputs are 1.

• Discuss: the “meaning” of each state.

Pres. X
State 0 1
S2S1S0 S2S1S0Z S2S1S0Z
A=000 001/0 010/0
B =001 011/0 100/0
C=010 101/0 110/0
D=011 011/0 100/0
E=100 101/0 110/1
F=101 011/0 100/1
G=110 101/1 110/0

• Convert table to truth
table (how?).

• Solve for s2 s1 s0 and Z.

A-72 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.72 Logic Diagram for
Sequence Detector

D
s2

Q

CLK

Q

D
s1

Q

Q

D
s0

Q Z

Q

000

001

010

011

100

101

110

111

0

x

1

x

1

x

1

0

000

001

010

011

100

101

110

111

x

x

x

x

x

x

x

0

000

001

010

011

100

101

110

111

x

x

x

x

x

x

x

0

000

001

010

011

100

101

110

111

0

0

0

0

x

x

x

0

A-73 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Example A.3: A Vending
Machine Controller

• Acepts nickel, dime, and quarter. When value of money
inserted equals or exceeds twenty cents, machine vends item
and returns change if any, and waits for next transaction.

• Implement with PLA and D flip-flops.

A-74 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.73 State Transition Diagram for
Vending Machine Controller

A
0¢

B
Q/101

N/000
D/000

Q/111

N/000

N	 =	 Nickel

D	 =	 Dime

Q	 =	 Quarter

1/0 = Return/Do not return a dime in change

1/0 = Return/Do not return a nickel in change

1/0 = Dispense/Do not dispense merchandise

A dime is

inserted

N/000
D/000

Q/111

D/100

D/110
N/100

Q/110

5¢

C
10¢

D
15¢

A-75 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.75(b) Truth Table for Vending
Machine Controller

	 0	 0	 0	 0	 0	 0	 1	 0	 0	 0

	 1	 0	 0	 0	 1	 1	 0	 0	 0	 0

	 2	 0	 0	 1	 0	 0	 0	 1	 1	 0

	 3	 0	 0	 1	 1	 d	 d	 d	 d	 d

	 4	 0	 1	 0	 0	 1	 0	 0	 0	 0

	 5	 0	 1	 0	 1	 1	 1	 0	 0	 0

	 6	 0	 1	 1	 0	 0	 0	 1	 0	 1

	 7	 0	 1	 1	 1	 d	 d	 d	 d	 d

	 8	 1	 0	 0	 0	 1	 1	 0	 0	 0

	 9	 1	 0	 0	 1	 0	 0	 1	 0	 0

	10	 1	 0	 1	 0	 0	 0	 1	 1	 1

	11	 1	 0	 1	 1	 d	 d	 d	 d	 d

	12	 1	 1	 0	 0	 0	 0	 1	 0	 0

	13	 1	 1	 0	 1	 0	 0	 1	 1	 0

	14	 1	 1	 1	 0	 0	 1	 1	 1	 1

	15	 1	 1	 1	 1	 d	 d	 d	 d	 d

Base 10

equivalent

Present

state Coin

Next

state

Dispense
Return nickel

Return dime

s1 s0 x1 x0 s1 s0 z2 z1 z0

(b)

A-76 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.75 (a)FSM Circuit, (b)Truth Table, and (c)PLA
Realization for Vending Machine Controller

s1
x0

x1

	 0	 0	 0	 0	 0	 0	 1	 0	 0	 0

	 1	 0	 0	 0	 1	 1	 0	 0	 0	 0

	 2	 0	 0	 1	 0	 0	 0	 1	 1	 0

	 3	 0	 0	 1	 1	 d	 d	 d	 d	 d

	 4	 0	 1	 0	 0	 1	 0	 0	 0	 0

	 5	 0	 1	 0	 1	 1	 1	 0	 0	 0

	 6	 0	 1	 1	 0	 0	 0	 1	 0	 1

	 7	 0	 1	 1	 1	 d	 d	 d	 d	 d

	 8	 1	 0	 0	 0	 1	 1	 0	 0	 0

	 9	 1	 0	 0	 1	 0	 0	 1	 0	 0

	10	 1	 0	 1	 0	 0	 0	 1	 1	 1

	11	 1	 0	 1	 1	 d	 d	 d	 d	 d

	12	 1	 1	 0	 0	 0	 0	 1	 0	 0

	13	 1	 1	 0	 1	 0	 0	 1	 1	 0

	14	 1	 1	 1	 0	 0	 1	 1	 1	 1

	15	 1	 1	 1	 1	 d	 d	 d	 d	 d

z1
z0

z2
s0 x1 x0

s1 s0 z2 z1 z0

D

CLK

s0

Q

D

Base 10

equivalent

Present

state Coin

Next

state

Dispense
Return nickel

Return dime

s1

s1 s0 x1 x0 s1 s0 z2 z1 z0

Q

0

1

2

4

5

6

8

9

10

12

13

14

(c)
(b)

(a)

5 x 5

PLA

A-77 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Mealy versus Moore Machines
• Mealy model: Outputs are

functions of inputs and
present state.

• Previous FSM designs
were Mealy machines,
because next state was
computed from present
state and inputs.

• Moore model: Outputs are
functions of present state
only.

x0

x1
z1
z0

z2

D

CLK

s0

Q

D
s1

Q

(a)

5 x 5

PLA

D z0

z1

s0

Q
1

0

x

CLK

Q

D
s1

00

01

10

11

4-to-1

MUX

00

01

10

11

4-to-1

MUX

Q

Q

• Both are equally powerful.

A-78 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.77 Tri-State Buffers

• There is a third state: high impedance. This means the gate
output is essentially disconnected from the circuit.

• This state is indicated by ∅ in the figure.

F = A C

or

F = ø

A

Tri-state buffer, inverted control

F = A C

or

F = ø

A

CC

Tri-state buffer

C	 A	 F

0	 0	 ø

0	 1	 ø

1	 0	 0

1	 1	 1

C	 A	 F

0	 0	 0

0	 1	 1

1	 0	 ø

1	 1	 ø

A-79 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

D

D0

Q0

QD

D1

Q1

QD

D2

Q2

QD

Write (WR)

CLK

Enable (EN)

D3

Q3

Q

WR

EN

D0D1D2D3

Q0Q1Q2Q3

Gate-Level View

Chip-Level View

 Fig A.78 A 4-Bit Register

Fig A.79 Abstract Representation of a 4-Bit Register

A-80 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.80 Internal Layout and Block Diagram
for Left-Right Shift with Parallel

Read/Write Capabilities

Right shift in

D

D3 D2 D1 D0

Q3 Q2 Q1 Q0

c1

c0

c1

c0

Left shift out
Left shift in

CLK
Enable (EN)

Q D Q D Q Right shift outD Q

Left shift in
Left shift out

Right shift in
Right shift out

D0D1D2D3

Q0Q1Q2Q3
c0
c1

Control	 Function

c1	 c 0

0	 0	 No change

0	 1	 Shift left

1	 0	 Shift right

1	 1	 Parallel load

A-81 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.81 A Modulo(8) Ripple Counter

J
K

Q2 Q1 Q0

CLK
Enable (EN)

RESET

Q
J

Q
K

Q
J111
K

Enable

RESET Q0Q1

MOD(8) COUNTER

Q2

CLK

Timing behavior

Q1

Q2

Q0

Note the use of
the T flip-flops.
They are used
to toggle the
input of the next
flip-flop when
its output is 1.

