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Some Definitions

• Combinational logic: a digital logic circuit in which logical 
decisions are made based only on combinations of the inputs 
(e.g., an adder).

• Sequential logic: a circuit in which decisions are made based 
on combinations of the current inputs as well as the past 
history of inputs (e.g., a memory unit).

• Finite state machine: a circuit which has an internal state, and 
whose outputs are functions of both current inputs and its 
internal state (e.g., a vending machine controller).
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The Combinational Logic Unit
• Translates a set of inputs into a set of outputs according to 

one or more mapping functions. 
• Inputs and outputs for a CLU normally have two distinct 

(binary) values: high and low, 1 and 0, 0 and 1, or 5 v and 0 v, 
for example.

• The outputs of a CLU are strictly functions of the inputs, and 
the outputs are updated immediately after the inputs change. A 
set of inputs i0–in are presented to the CLU, which produces a 
set of outputs according to mapping functions f0–fm.

Fig A.1

i0
i1

in

f0
f1

fm

Combinational

logic unit
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Truth Tables
• Developed in 1854 by George Boole
• Further developed by Claude Shannon (Bell Labs)
• Outputs are computed for all possible input combinations 

(how many input combinations are there?

Fig. A.2

Consider a room with two light switches.  How must they work†?

Light Z

Switch BSwitch A

“Hot”

GND

A	 B	 Z

Inputs Output

0	 0	 0


0	 1	 1


1	 0	 1


1	 1	 0

†Don't show this to your electrician, or wire your house this way. This circuit 
definitely violates the electric code. The practical circuit never leaves the lines 
to the light "hot" when the light is turned off. Can you figure how?
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Fig A.4  Truth Tables Showing All Possible 
Functions of Two Binary Variables

• The more frequently used functions have names: AND, XOR, 
OR, NOR, XOR, and NAND. (Always use upper-case spelling.)
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Logic Gates and Their Symbols

• Note the use of the “inversion bubble.”
• Be careful about the “nose” of the gate when drawing AND vs. OR.

Fig. A.5  Logic 
Gate Symbols 
for AND, OR, 
Buffer, and 
NOT Boolean 
functions

A
B

F = AB
A
B

F = A + B

AND OR

F = A A

NOT (Inverter)

F = A A

Buffer

A	 B	 F

0	 0	 0


0	 1	 0


1	 0	 0


1	 1	 1

A	 F

0	 0


1	 1

A	 F

0	 1


1	 0

A	 B	 F

0	 0	 0


0	 1	 1


1	 0	 1


1	 1	 1
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Fig A.6  Logic Gate Symbols for NAND, 
NOR, XOR, and XNOR Boolean functions  

A
B

F = A B
A
B

F = A + B

NAND NOR

A
B

F = A + B
A
B

F = A     B

Exclusive-OR (XOR) Exclusive-NOR (XNOR)

A	 B	 F

0	 0	 1


0	 1	 1


1	 0	 1


1	 1	 0

A	 B	 F

0	 0	 1


0	 1	 0


1	 0	 0


1	 1	 0

A	 B	 F

0	 0	 0


0	 1	 1


1	 0	 1


1	 1	 0

A	 B	 F

0	 0	 1


0	 1	 0


1	 0	 0


1	 1	 1
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Fig A.7   Variations of Basic Logic 
Gate Symbols

(a) 3 inputs            (b) A negated input                (c) Complementary outputs

A
B F = ABC

A

B
A + B
A + B

(a) (b)

(c)

C

A
B

F = A + B
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Fig A.8  The Inverter at the
 Transistor Level

Transistor 
symbol

Power
terminals A transistor used 

as an inverter

(a) (b) (c) (d)

A A

Base
Emitter
Collector

GND = 0 V

VCC = +5 V
VCC

A

A

4.0
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3.0

2.5

2.0
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0
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O
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Output voltage vs. Input voltage

1 1.2 1.4 1.6 1.8 20

Vout
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VCC = 5 V
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Inverter transfer
function
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Fig A.9  Assignments of Logical 0 
and Logical 1 to Voltage Ranges

Logical 1

Logical 0

+5 V

2.4 V

0.4 V
0 V

Logical 1

Logical 0

+5 V

2.0 V

0.8 V

0 V

Forbidden range Forbidden range

(a) At the output of a
logic gate

(b) At the input to a
logic gate
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A.10  Transistor Circuits

B

V2

A

V1

B

V2

A

AB
Vout

A + B
Vout

VCC

V1

VCC

(a) A two-input NAND gate (b) A two-input NOR gate
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Tbl A.1  The Basic Properties of 
Boolean Algebra

A B  =  B A

A (B + C)  =  A B + A C

1 A = A

A A  = 0

0 A  =  0

A A  = A

A (B C)  =  (A B) C

A + B  =  B + A

A + B C  =  (A + B) (A + C)

0 + A  =  A

1 + A  =  1

A + A  =  1

A + A  =  A

A + (B + C)  =  (A + B) + C

Commutative

Distributive

Identity

Inverse

Associative

A B  =  A + B A + B  =  A B
DeMorgan’s 
Theorem

PropertyRelationship Dual

Null

Idempotence

A  =  A Complement

Consensus 
Theorem

( A+ B)( A+ C)( B + C)

= (A + B)( A+ C )

AB+ AC + BC

= AB+ AC

Postulates

Theorems

A, B, etc. are 
Literals; 0 and 
1 are 
constants.

Principle of duality: The 
dual of a Boolean 
function is gotten by 
replacing AND with OR 
and OR with AND, 
constant 1s by 0s, and 
0s by 1s
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DeMorgan’s Theorem

0
0
1
1

0
1
0
1

A B

1
1
1
0

1
1
1
0

1
0
0
0

1
0
0
0

= =A B A  +  B A  +   B A B

Discuss: Applying DeMorgan’s theorem by “pushing the bubbles” 
and “bubble tricks.”

A

B
F = A B

A + B = A + B = A BDeMorgan’s theorem:

A
B

F = A + B

Fig A.12

Fig A.11
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The Sum-of-Products (SOP) Form

• Transform the function into a two-level AND-OR equation
• Implement the function with an arrangement of logic gates 

from the set {AND, OR, NOT}
• M is true when A = 0, B = 1, and C = 1, or when A = 1, B = 0, 

and C = 1, and so on for the remaining cases.
• Represent logic equations by using the sum-of-products (SOP) 

form

Fig. A.14  Truth 
Table for the 
Majority Function

A	 B	 C	 FMinterm

Index

0	 0	 0	 0


0	 0	 1	 0


0	 1	 0	 0


0	 1	 1	 1


1	 0	 0	 0


1	 0	 1	 1


1	 1	 0	 1


1	 1	 1	 1

0


1


2


3


4


5


6


7

1

0

0-side 1-side

0

A balance tips to the left or 
right depending on whether 

there are more 0’s or 1’s.
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The SOP Form of the Majority Gate

• The SOP form for the 3-input majority gate is:

• M = ABC + ABC + ABC + ABC   = m3 + m5 +m6 +m7  =   Σ (3, 5, 6, 7)

• Each of the 2n terms are called minterms, running from 0 to 2n - 1

• Note the relationship between minterm number and Boolean value.
• Discuss: common-sense interpretation of equation.
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Fig A.15  A Two-Level AND-OR Circuit 
Implements the Majority Function

Discuss: what is the gate count?

F

BA

A B C 

A B C 

A B C 

A B C 

C
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Fig A.16  Four Notations Used at 
Circuit Intersections

Connection No connection

Connection No connection
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Fig A.17  A Two-Level OR-AND Circuit 
that Implements the Majority Function

F

BA

A + B + C 

A + B + C 

A + B + C 

A + B + C 

C
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Positive versus Negative Logic
•Positive logic: truth, or assertion is represented by logic 1, higher voltage; 
falsity, de- or unassertion, logic 0, is represented by lower voltage.
•Negative logic: truth, or assertion is represented by logic 0 , lower voltage; 
falsity, de- or unassertion, logic 1, is represented by lower voltage

Gate Logic: Positive vs. Negative Logic

Normal Convention: Postive Logic/Active High
Low Voltage = 0;  High Voltage = 1

Alternative Convention sometimes used:  Negative Logic/Active Low

Behavior in terms
of Electrical Levels

Two Alternative Interpretations
Positive Logic AND
Negative Logic OR

Dual Operations

Negative LogicPositive LogicVoltage Truth T able

F
low
low
low
high

F
0
0
0
1

F
1
1
1
0

A
low
low
high
high

B
low
high
low
high

B
0
1
0
1

A
0
0
1
1

A
1
1
0
0

B
1
0
1
0

F
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Fig A.18   Positive and Negative 
Logic Assignments

A
B

F = A B

Positive logic levelsVoltage levels Negative logic levels

A
B

F = A + B
A
B

F
Physical


AND gate

A
B

F = A B

Positive logic levelsVoltage levels Negative logic levels

A
B

F = A + B
A
B

F
Physical


NAND gate

A	 B	 F

0	 0	 0


0	 1	 0


1	 0	 0


1	 1	 1

	 A	 B	 F

low	 low	 low


low	 high	 low


high	 low	 low


high	 high	 high

A	 B	 F

1	 1	 1


1	 0	 1


0	 1	 1


0	 0	 0

A	 B	 F

0	 0	 1


0	 1	 1


1	 0	 1


1	 1	 0

	 A	 B	 F

low	 low	 high


low	 high	 high


high	 low	 high


high	 high	 low

A	 B	 F

1	 1	 0


1	 0	 0


0	 1	 0


0	 0	 1
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Bubble Matching

• Active-low signals are signified by a prime or overbar or /.
• Active high: enable
• Active low: enable′, enable, enable/ 
• Discuss microwave oven control:

• Active high: Heat = DoorClosed • Start
• Active low: ? (Hint: begin with AND gate as before)
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Fig. A.19  The Process of Bubble 
Matching

Positive logic  x0
Positive logic  x1

Negative logic  x0
Negative logic  x1

Negative logic  x0

Negative logic  x1

Negative logic  x0
Negative logic  x1

Positive

logic

Negative

logic

Negative

logic

(b)(a)

(c) (d)

Negative

logic

Bubble mismatch

Bubble match

Bubble match
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Digital Components

• High-level digital circuit designs are normally made using 
collections of logic gates referred to as components, rather 
than using individual logic gates. The majority function can be 
viewed as a component.

• Levels of integration (numbers of gates) in an integrated 
circuit (IC):

• Small-scale integration (SSI): 10–100 gates. 
• Medium-scale integration (MSI): 100–1000 gates.
• Large-scale integration (LSI): 1000–10,000 logic gates.
• Very large scale integration (VLSI): 10,000–upward.

• These levels are approximate, but the distinctions are useful in 
comparing the relative complexity of circuits.

• Let us consider several useful MSI components.
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Fig A.20   
Simplified 
Data Sheet

SN7400 QUADRUPLE 2-INPUT POSITIVE-NAND GATES

description

absolute maximum ratings

logic diagram (positive logic)

recommended operating conditions

Supply voltage, VCC
Input voltage:
Operating free-air temperature range:
Storage temperature range

7 V
5.5 V

0˚C to 70˚C
– 65˚C to 150˚C

function table (each gate)

INPUTS
A	 B	 Y

H	 H	 L
L	 X	 H
X	 L	 H

1A

1B

1Y

2A

2B

2Y


GND

1A

1B

1Y

VCC

4B

4A

4Y

3B

3A

3Y

1


2


3


4


5


6


7

14


13


12


11


10


9


8

OUTPUT

package (top view)

schematic (each gate)These devices contain four independent
2-input NAND gates.

VCC	 Supply voltage

VIH	 High-level input voltage

VIL	 Low-level input voltage

IOH	 High-level output current

IOL	 Low-level output current

TA	 Operating free-air temperature

4.75

2

0

5 5.25

0.8

– 0.4

16

70

V

V

V

mA

mA

˚C

MIN NOM MAX UNIT

11

7

22

15

ns

ns

MINTEST CONDITIONSTO (output)FROM (input)PARAMETER NOM MAX UNIT

Y

GND

A
B

VCC

130 Ω1.6 kΩ

1 kΩ

4 kΩ

electrical characteristics over recommended operating free-air temperature range

switching characteristics, VCC = 5 V, TA = 25˚ C

VALUE OPERATING CONDITIONS

VOH	 VCC = MIN, VIL = 0.8 V, IOH = – 0.4 mA

VOL	 VCC = MIN, VIH = 2 V, IOL = 16 mA

IIH	 VCC = MAX, VI = 2.4 V

IIL	 VCC = MAX, VI = 0.4 V

ICCH	 VCC = MAX, VI = 0 V

ICCL	 VCC = MAX, VI = 4.5 V

tPLH

tPHL

RL = 400 Ω
CL = 15 pF

A or B Y

2.4 3.4

0.2

4

12

0.4

40

– 1.6

8

22

V

V

µA

mA

mA

mA

MIN TYP MAX UNIT

2A

2B

2Y

3A

3B

3Y

4A

4B

4Y

Y = A B
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The Multiplexer
Fig A.21  Block Diagram and Truth Table

F

A	 B	 F

D
at

a 
in

p
ut

s

0	 0	 D 0


0	 1	 D 1


1	 0	 D 2


1	 1	 D 3
A	 B

Control inputs

D0


D1


D2


D3

F = A B D0 + A B D1 + A B D2 + A B D3

00


01


10


11

F

BA

D1

D2





D3

D0

Fig A.22  AND-OR Circuit Implementation
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Fig A.23  An 8-1 MUX Implements 
the Majority Function

Principle: Use the MUX select to pick out the selected minterms of the function.

F

A	 B	 C	 M

0	 0	 0	 0


0	 0	 1	 0


0	 1	 0	 0


0	 1	 1	 1


1	 0	 0	 0


1	 0	 1	 1


1	 1	 0	 1


1	 1	 1	 1

A B C

0


0


0


1


0


1


1


1

000


001


010


011


100


101


110


111
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Fig A.24  A 4-1 MUX Implements a 
3-Variable Function

Principle: Use the A and B inputs to select a pair of minterms. The 
value applied to the MUX input is selected from {0, 1, C, C} to pick 
the desired behavior of the minterm pair.

F

A	 B	 C	 F

0	 0	 0	 0


0	 0	 1	 0


0	 1	 0	 1


0	 1	 1	 1


1	 0	 0	 0


1	 0	 1	 1


1	 1	 0	 1


1	 1	 1	 0
A B

0
0


1


C


C

00


01


10


11
1

C

C
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The Demultiplexer (DEMUX)

D

F0 = D A B F2 = D A B

F1 = D A B F3 = D A B

D	 A	 B	 F 0	 F1	 F2	 F3	 


0	 0	 0	 0	 0	 0	 0


0	 0	 1	 0	 0	 0	 0


0	 1	 0	 0	 0	 0	 0


0	 1	 1	 0	 0	 0	 0


1	 0	 0	 1	 0	 0	 0


1	 0	 1	 0	 1	 0	 0


1	 1	 0	 0	 0	 1	 0


1	 1	 1	 0	 0	 0	 1

A B

F0


F1


F2


F3

00


01


10


11

Fig A.25  Block Diagram and Truth Table
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The Demultiplexer Is a Decoder 
with an Enable Input

Compare to Fig A.28

D

BA

F1

F2





F3

F0

Enable

D0 = A B D2 = A BD1 = A B D3 = A B

Enable = 1

A	 B	 D 0	 D1	 D2	 D3

0	 0	 1	 0	 0	 0


0	 1	 0	 1	 0	 0


1	 0	 0	 0	 1	 0


1	 1	 0	 0	 0	 1

A

B

D0


D1


D2


D3

00


01


10


11

Enable = 0

A	 B	 D 0	 D1	 D2	 D3

0	 0	 0	 0	 0	 0


0	 1	 0	 0	 0	 0


1	 0	 0	 0	 0	 0


1	 1	 0	 0	 0	 0

Fig A.27  Block Diagram and Truth Table

Fig A.26  A Circuit for a 1-4 DEMUX
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Fig A.28   An AND Circuit for a 2-4 
Decoder

Enable

B
A

D1

D2





D3

D0

D

BA

F1

F2





F3

F0

Fig A.27
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Fig A.29   A 3-to-8 Decoder 
Implements the Majority Function

M

A


B


C

000


001


010


011


100


101


110


111
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The Priority Encoder
• An encoder translates a set of inputs into a binary encoding.
• Can be thought of as the converse of a decoder. 
• A priority encoder imposes an order on the inputs.
• Ai has a higher priority than Ai+1.

F0 = A0A1A3 + A0A1A2

F1 = A0A2A3 + A0A1

A0	 A1	 A2	 A3	 F0	 F1

0	 0	 0	 0	 0	 0

0	 0	 0	 1	 1	 1

0	 0	 1	 0	 1	 0

0	 0	 1	 1	 1	 0

0	 1	 0	 0	 0	 1

0	 1	 0	 1	 0	 1

0	 1	 1	 0	 0	 1

0	 1	 1	 1	 0	 1

1	 0	 0	 0	 0	 0

1	 0	 0	 1	 0	 0

1	 0	 1	 0	 0	 0

1	 0	 1	 1	 0	 0

1	 1	 0	 0	 0	 0

1	 1	 0	 1	 0	 0

1	 1	 1	 0	 0	 0

1	 1	 1	 1	 0	 0

F0


F1

A0


A1


A2


A3

00


01


10


11 A1

A2





A3

A0

F1

F0

Fig A.30  Block Diagram and Truth Table

Fig A.31  Logic Diagram for a 4-to-2 
Priority Encoder
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Fig A.32  A Programmable Logic Array

• A PLA is a 
customizable AND 
matrix followed by a 
customizable OR 
matrix

A B C

OR matrix

AND matrix

F1F0

Fuses
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Fig A.33  Simplified Representation 
of a PLA
A B C

A B C

F1F0

(Majority) (Unused)

A B C

A B C

A B C



A-36 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan  © 1997 V. Heuring and H. Jordan 

Using PLAs to Implement an Adder

Fig A.34  Black Box 
Representation

A
B
C

F0

F1

PLA
Ai	 B i	 C i	 S i	 Ci+1 Bi

Ci

Full

adder

Ai

Ci+1
Si

0	 0	 0	 0	 0


0	 0	 1	 1	 0


0	 1	 0	 1	 0


0	 1	 1	 0	 1


1	 0	 0	 1	 0


1	 0	 1	 0	 1


1	 1	 0	 0	 1


1	 1	 1	 1	 1

Operand A
Operand B

0
0+

00

SumCarry 
Out

0
1+

10

1
1+

01

Example:

Carry
Operand A

Operand B
Sum

0   1   0   0

0   1   1   0

1   0   0   0

1   0   1   0

+

Carry In 0 0

1
0+

10

0 0

0
0+

10

1

0
1+

01

1

1
0+

01

1

1
1+

11

1

Fig A.35  Addition for Two Unsigned Binary

Fig A.36  Truth 
Table for a Full 
Adder
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Fig A.37  A 4-Bit 
Adder Implemented 
with a Cascade of 

Full Adders

Fig A.38  PLA 
Realization of a 

Full Adder

b3 c3

Full

adder
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c4
s3

b2 c2
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adder
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b1 c1

Full
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b0 c0
0

Full
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a0

s0
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Reduction (Simplification) of 
Boolean Expressions

• It may be possible to simplify the canonical SOP or POS forms.

• A smaller Boolean equation translates to a lower gate count in 
the target circuit.

• We discuss two methods: algebraic reduction and Karnaugh 
map reduction.
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The Algebraic Method
Consider the majority function, F:

F = A BC + AB C + ABC + ABC

F = A BC + AB C + AB(C + C)

F = A BC + AB C + AB(1)

F = A BC + AB C + AB

F = A BC + AB C + AB + ABC

F = A BC + AC(B + B) + AB

F = A BC + AC + AB

F = A BC + AC + AB + ABC

F = BC(A + A)+ AC + AB

F = BC + AC + AB

Distributive property

Complement  property

Identity property

Idempotence property

Identity property

Complement and identity properties

Idempotence property

Distributive property

Complement and identity properties 
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Fig A.40   Venn Diagrams

Each distinct region in the “universe” represents a minterm.
This diagram can be transformed into a Karnaugh Map.

B

AABC

AB'CAB'C'ABC'

A'BC' A'B'C

A'BC A'B'C'
C

3 binary variables The majority function
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Fig A.41  A K-Map of the Majority 
Function

The map contains all the minterms. Adjacent 1’s in the K-map 
satisfy the complement property of Boolean algebra. 

Place a “1” in each cell that has a that minterm.
Cells on the outer edge of the map “wrap around”

A	 B	 C	 FMinterm

Index

0	 0	 0	 0


0	 0	 1	 0


0	 1	 0	 0


0	 1	 1	 1


1	 0	 0	 0


1	 0	 1	 1


1	 1	 0	 1


1	 1	 1	 1

0


1


2


3


4


5


6


7

1

0

0-side 1-side

0

A balance tips to the left or 
right depending on whether 

there are more 0’s or 1’s.

00
AB

C

0

1

1

11 1

01 11 10
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Fig A.42  Adjacency Groupings for the 
Majority Function

00
AB

C

0

1

1

11 1

01 11 10

M= BC + AC + AB
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A.43  Minimized AND-OR Circuit for 
the Majority Function

F

BA C

M= BC + AC + AB
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Fig A.44  Minimal and Not-Minimal 
K-Map Groupings
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Fig A.45  The Corners of a K-Map 
Are Logically Adjacent

00
AB

CD

F = BCD + BD + AB
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A.46  Two Different Minimized Equations 
Are Produced from the Same K-Map

00
AB

CD

F = BCD + BD

00

01

11

10

1 d

d

1 1

1 1

01 11 10 00
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Speed and Performance

• The speed of a digital system is governed by 

• the propagation delay through the logic gates and 

• the propagation across interconnections.
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Fig A.47  Propagation Delay for a NOT Gate 
(Adapted from Hamacher et al., 1990)
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Circuit Depth Affects Propagation Delay

F ABCD ABCD ABCD ABCD ABCD ABCD ABCD

BC BC AD BC BC AD BC BC

( )
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= + + + + +
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0

0

0
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Fig A.48  A 4-Variable Function Implemented with a 16-to-1 MUX
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Fan-in May Affect Circuit Depth

((A + B) + C) + DA + B + C + D = (A + B) + (C + D)

DCBABA DCBA DC

Degenerate tree

(A + B) + (C + D)

Balanced tree

Associative law of Boolean algebra:

A + B + C + D

Initial high fan-in gate

Fig A.49  A Logic Gate
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Sequential Logic

• The combinational logic circuits we have been studying so far 
have no memory.  The outputs always follow the inputs.

• There is a need for circuits with a memory, which behave 
differently depending upon their previous state.

• An example is the vending machine, which must remember 
how many and what kinds of coins have been inserted, and 
which behave according to not only the current coin inserted, 
but also upon how many and what kind of coins have been 
deposited previously.

• These are referred to as finite state machines, because they 
can have at most a finite number of states.
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Fig A.50  Classical Model of a 
Finite State Machine 
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A.51  A NOR Gate with a Lumped 
Delay

A

B

A
1

0

1

0

1

0

B

Timing behavior

∆τ

∆τ

A + B

A + B

This delay between input and output is at the basis of the functioning of 
an important memory element, the flip-flop.
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A.52  An S-R Flip-Flop

S
Q

S

R

Timing behavior

Q
R

2∆τ

∆τ

2∆τ

∆τ

Q

Q

Qt	 St	 Rt	 Qi+1

0	 0	 0	 0


0	 0	 1	 0


0	 1	 0	 1


0	 1	 1	 (disallowed)


1	 0	 0	 1


1	 0	 1	 0


1	 1	 0	 1


1	 1	 1	 (disallowed)

The S-R flip-flop is an active-high (positive logic) device.
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Fig A.53  Converting a NOR S-R 
to an NAND S-R

S
Q

QR

S
Q

QR

Q
S

Q

QR
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NOR 
Implementation
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Rearrange
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Fig A.54  A Circuit with a Hazard

SC

B

AB

Q

A

Q
R

S

R

C

B
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AB

Timing behavior

2∆τ

∆τ

∆τ

Glitch caused by

a hazard

Q

Q

It is desirable to be able to “turn off”
the flip-flop so it does not respond to
such hazards.
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Fig A.55  A Clock Waveform

Cycle time = 25 ns

Time

A
m

p
lit

ud
e

In a positive logic system, the “action” happens when the clock 
is high, or positive.  The low part of the clock cycle allows 
propagation between subcircuits, so their inputs are stable at the 
correct value when the clock next goes high.
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A.56  A Clocked S-R Flip-Flop

The clock signal, CLK, turns on the inputs to the flip-flop.

S

CLK

Q

Q

R

R

S

CLK

Timing behavior

3∆τ

2∆τ

Q

Q
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Fig A.57  A Clocked D (Data) Flip-Flop

D

CLK

Symbol

Q

Q

Circuit

D

CLK

Timing behavior

2∆τ

∆τ

2∆τ

∆τ

Q

Q

D Q

C Q

The clocked D flip-flop, sometimes called a latch, has a potential problem: If 
D changes while the clock is high, the output will also change. The Master-
Slave flip-flop solves this problem.
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A.58  A Master-Slave Flip-Flop

CLK

Symbol

D

CLK

Timing behavior

3∆τ 2∆τ

∆τ

2∆τ 2∆τ

∆τ

QS

QS

QM

D Q

Q

D QS

QS

DD QM

C C

Circuit
SlaveMaster

The rising edge of the clock clocks new data into the master, while the slave 
holds previous data.  The falling edge clocks the new master data into the 
slave.
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Fig A.59  The Basic J-K Flip-Flop

• The J-L flip-flop eliminates the S = R = 1 problem of the S-R flip-flop, 
because Q enables J while Q' disables K, and vice versa.

• However there is still a problem. If J goes momentarily to 1 and then 
back to 0 while the flip-flop is active and in the reset, the flip-flop will 
“catch” the 1. 

• This is referred to as “1’s catching.”
• The J-K master-slave flip-flop solves this problem.

J

K

CLK

Symbol

Q

Q

Circuit

J Q

K Q
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Fig A.61  A Master-Slave J-K Flip-Flop

J
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Symbol

Q

Q

Circuit

J Q

K Q
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Fig A.60  A T Flip-Flop

• The presence of a constant 1 at J and K means that the flip-
flop will change its state from 0-1 or 1-0 each time it is clocked 
by the T (toggle) input.

Symbol

TT

1 Q

Q

Circuit

J

K

Q

Q
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Fig A.62  Negative Edge-Triggered 
D Flip-Flop

• When the clock is high, the two input latches output 0, so the main 
latch remains in its previous state regardless of changes in D.

• When the clock goes high-low, values in the two input latches will 
affect the state of the main latch.

• While the clock is low, D cannot affect the main latch.
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Finite State Machine Design
• Counter has a clock input, CLK, and a RESET input.
• Has two output lines, which must take values of 00, 01, 10, and 11 

on subsequent clock cycles.

It requires 
two flip-flops 
to store the 
state.

0 1 1 0 0

4 3 2 1 0  Time (t)

0 0 0 0 1

Time (t)  4 3 2 1 0

0 1 0 1 02-bit

synchronous


counter

CLK

D
s1

Q

Q

D

s0

Q

Q

q0

q1

s0

s1

RESET

Fig A.63  A Modulo-4 Counter
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Fig A.64  State Transition Diagram for 
a Modulo(4) Counter

• The state diagram and state table tell “all there is to know” about 
the FSM, and are the basis for a provably correct design.

Next State
Present State     RESET

   0    1
A B/01 A/00
B C/10 A/00
C D/11 A/00
D A/00 A/00

State
Table

Present State     RESET
0 1

A:00 01 00
B:01 10 00
C:10 11 00
D:11 00 00

State
Table
With
States
Assigned

Output 00

state

Output 01

state

Output 10

state

Output 11

state

BA

DC

1/00

q1

RESET
0/01

1/00

0/11

0/10 0/00
1/00

1/00

q0
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Fig A.67  Truth Table

• Develop equations from this truth table for s0(t+1), s1(t+1),
q0(t+1), and q1(t+1) from inputs r(t), s0(t) and s1(t)

r(t) s1(t)s0(t) s1s0(t+1) q1q0(t+1)

0 00 01 01

0 01 10 10

0 10 11 11

0 11 00 00

1 00 00 00

1 01 00 00

1 10 00 00

1 11 00 00
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Fig A.67  Equations

               s t r t s t s t r t s t s t

s t r t s t s t r t s t s t

q t r t s t s t r t s t s t

q t

0 1 0 1 0

1 1 0 1 0

0 1 0 1 0

1

1

1

1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

(

+ = +

+ = +

+ = +

++ = +1 1 0 1 0) ( ) ( ) ( ) ( ) ( ) ( )r t s t s t r t s t s t

Implement these equations
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Fig A.68  Logic Design for a 
Modulo(4) Counter
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q1

q0

D
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There are many simpler techniques for implementing counters.
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Example A.2: A Sequence Detector

• Design a machine that outputs a 1 when exactly 2 of the last 3 
inputs are 1.

• e.g. input sequence of 011011100 produces an output 
sequence of  001111010

• Assume input is a 1-bit serial line.
• Use D flip-flops and 8-1 multiplexers.
• Begin by constructing a state transition diagram.
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Fig A.69  State Transition Diagram for 
Sequence Detector

B

C

A

D
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F
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0/0
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1/0
0/0

1/0

1/0

0/0

1/1

1/1

0/0

1/0

0/1

1/0

0/0

• Design a 
machine that 
outputs a 1 
when exactly 
2 of the last 3 
inputs are 1.

• Discuss: the “meaning” of each state.

Pres. X
State 0 1
S2S1S0 S2S1S0Z S2S1S0Z
A=000 001/0 010/0
B =001 011/0 100/0
C=010 101/0 110/0
D=011 011/0 100/0
E=100 101/0 110/1
F=101 011/0 100/1
G=110 101/1 110/0

• Convert table to truth 
table (how?).

• Solve for s2 s1 s0 and Z.



A-72 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan  © 1997 V. Heuring and H. Jordan 

Fig A.72  Logic Diagram for 
Sequence Detector
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Example A.3: A Vending 
Machine Controller

• Acepts nickel, dime, and quarter. When value of money 
inserted equals or exceeds twenty cents, machine vends item 
and returns change if any, and waits for next transaction.

• Implement with PLA and D flip-flops.
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Fig A.73  State Transition Diagram for 
Vending Machine Controller
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Fig A.75(b)  Truth Table for Vending 
Machine Controller

	 0	 0	 0	 0	 0	 0	 1	 0	 0	 0

	 1	 0	 0	 0	 1	 1	 0	 0	 0	 0

	 2	 0	 0	 1	 0	 0	 0	 1	 1	 0

	 3	 0	 0	 1	 1	 d	 d	 d	 d	 d

	 4	 0	 1	 0	 0	 1	 0	 0	 0	 0

	 5	 0	 1	 0	 1	 1	 1	 0	 0	 0

	 6	 0	 1	 1	 0	 0	 0	 1	 0	 1

	 7	 0	 1	 1	 1	 d	 d	 d	 d	 d

	 8	 1	 0	 0	 0	 1	 1	 0	 0	 0

	 9	 1	 0	 0	 1	 0	 0	 1	 0	 0

	10	 1	 0	 1	 0	 0	 0	 1	 1	 1

	11	 1	 0	 1	 1	 d	 d	 d	 d	 d

	12	 1	 1	 0	 0	 0	 0	 1	 0	 0

	13	 1	 1	 0	 1	 0	 0	 1	 1	 0

	14	 1	 1	 1	 0	 0	 1	 1	 1	 1

	15	 1	 1	 1	 1	 d	 d	 d	 d	 d
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Fig A.75 (a)FSM Circuit, (b)Truth Table, and (c)PLA 
Realization for Vending Machine Controller
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Mealy versus Moore Machines
• Mealy model:  Outputs are 

functions of inputs and 
present state.

• Previous FSM designs 
were Mealy machines, 
because next state was 
computed from present 
state and inputs.

• Moore model: Outputs are 
functions of present state 
only.
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• Both are equally powerful.
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Fig A.77  Tri-State Buffers

• There is a third state: high impedance. This means the gate 
output is essentially disconnected from the circuit.

• This state is indicated by ∅  in the figure.

F = A C
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F = ø

A

Tri-state buffer, inverted control

F = A C

or


F = ø
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CC

Tri-state buffer

C	 A	 F
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1	 1	 1

C	 A	 F

0	 0	 0
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1	 0	 ø
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  Fig A.78  A 4-Bit Register

Fig A.79  Abstract Representation of a 4-Bit Register
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Fig A.80  Internal Layout and Block Diagram 
for Left-Right Shift with Parallel 

Read/Write Capabilities
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Fig A.81  A Modulo(8) Ripple Counter
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Note the use of 
the T flip-flops. 
They are used 
to toggle the 
input of the next 
flip-flop when 
its output is 1.


