
C-1 Appendix C—Assembly and Assemblers

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Appendix C:
Assembly and Assemblers

Topics

C.1 What is an assembler
• Translates from assembly language to machine language

C.2 Assembly Language Structure
C.3 Tasks of the Assembler

C-2 Appendix C—Assembly and Assemblers

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig C.1 Time Periods of the Various
Processes in Program Development

Assembly language
program text

AssemblerAssemble time

Epoch or time period

Link time

Load time

Run time

Program listing

Error messages

Other machine
code modules

Machine code
module (binary)

Linker

Loader

Load module
Machine

main
memory

CPU

0101 ... 1011
0111 ... 0100
0101 ... 1011
0111 ... 0100
0101 ... 1011
0111 ... 0100
0101 ... 1011

0111 ... 0100
0101 ... 1011
0111 ... 0100
0101 ... 1011
0111 ... 0100

C-3 Appendix C—Assembly and Assemblers

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

The Assembler Provides:
• Access to all the machine’s resources by the assembled

program. This includes access to the entire instruction set
of the machine.

• A means for specifying run-time locations of program and
data in memory.

• Provide symbolic labels for the representation of constants
and addresses.

• Perform assemble-time arithmetic.
• Provide for the use of any synthetic instructions.
• Emit machine code in a form that can be loaded and

executed.
• Report syntax errors and provide program listings
• Provide an interface to the module linkers and program

loader.
• Expand programmer defined macro routines.

C-4 Appendix C—Assembly and Assemblers

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Assembler Syntax and Directives

• Syntax: Label OPCODE Op1, Op2, ... ;Comment field

• Pseudo-operations (sometimes called “pseudos,” or directives) are
“opcodes” that are actually instructions to the assembler and that do
not result in code being generated.

• Assembler maintains several data structures
• Table that maps text of opcodes to op number and instruction

format(s)
• “Symbol table” that maps defined symbols to their value

C-5 Appendix C—Assembly and Assemblers

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Assembler Directives
Type Example Action
Define Size EQU 1000 Set label NOV equal to constant 11
symbol MAY EQU ‘May’ Set label MAY equal to string ‘May’

Fix a Start ORG 2000H Fix the location at which the
mem. following program or data word will
loc. load to 2000H.

Reserve Array DS.B 20 Reserve space for 20 bytes
storage Wary DS.W Size Reserve space for 1000 Words

Init. Pi DC.L 3.1415 Reserve a word at Loc’n Pi, init to 3.14..
Colors DC.B 0,1,2,3 Reserve and init 4 bytes at loc. Color.

C-6 Appendix C—Assembly and Assemblers

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig C.2 An Example Assembly
Language Program

;SumInts - Sum the first N Integers (MC68000 Code)
;
MAIN
ORG $1000

K EQU 4
N EQU K+10 ;Number of ints to sum
SUM DC.W 0 ;Storage for result

ORG $5000
SumInts CLR.W D0 ;D0 serves as accumulator

MOVE.W #N, D1 ;Move largest int to reg.
LOOP ADD.W D1, D0 ;Add it to accumulator

DBRA D1, LOOP ;Work backwards to zero
MOVE.W D0, SUM(A5) ;And store result
ENDMAIN
END

C-7 Appendix C—Assembly and Assemblers

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig C.3 Assembler Listing File

MC680xx Assembler - Ver 3.4 13-Feb-96 Page 1

Copyright Apple Computer, Inc. 1984-1995

Loc Object Code Addr Source Statement

;SumInts - Sum the first N Integers

00000 MAIN

00000 0000 1000 ORG $1000

01000 0000 0004 K EQU 4

01000 0000 000E N EQU K+10 ;Number of ints to sum

01000 0000 SUM DC.W 0 ;Storage for result

01002

01002 0000 5000 ORG $5000

05000 4240 SumInts CLR.W D0 ;D0 serves as accumulator

05002 323C 000E MOVE.W #N, D1 ;Move largest int to reg.

05006 D041 LOOP ADD.W D1, D0 ;Add it to accumulator

05008 51C9 FFFC 05006 DBRA D1, LOOP ;Work backwards to zero

0500C 3B40 1000 MOVE.W D0, SUM(A5) ;And store result

05010 ENDMAIN

END

Assembly complete - no errors found. 16 lines

C-8 Appendix C—Assembly and Assemblers

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

The 2-Pass Assembly Process
• Pass 1:

• Initialize location counter (assemble-time “PC”) to 0
• Pass over program text: enter all symbols into symbol table

• May not be able to map all symbols on first pass
• Definition before use is usually allowed

• Determine size of each instruction, map to a location
• Uses pattern matching to relate opcode to pattern
• Increment location counter by size
• Change location counter in response to ORG pseudos

• Pass 2:
• Insert binary code for each opcode and value
• “Fix up” forward references and variable-sizes instructions

• Examples include variable-sized branch offsets and
constant fields

