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Chapter 5: Processor Design—
Advanced Topics

Topics

5.1  Pipelining
• A pipelined design of SRC
• Pipeline hazards

5.2  Instruction-Level Parallelism
• Superscalar processors
• Very Long Instruction Word (VLIW) machines

5.3  Microprogramming
• Control store and microbranching
• Horizontal and vertical microprogramming
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Fig 5.1 Executing Machine Instructions 
versus Manufacturing Small Parts
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sub r2, r5, 1

add r4, r3, r2

st r4, addr1

Id r2, addr2

shr r3, r3, 2
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The Pipeline Stages

• 5 pipeline stages are shown
• 1. Fetch instruction
• 2. Fetch operands
• 3. ALU operation
• 4. Memory access
• 5. Register write

• 5 instructions are executing
• shr r3, r3, #2 ;Storing result into r3
• sub r2, r5, #1 ;Idle—no memory access needed
• add r4, r3, r2 ;Performing addition in ALU
• st  r4, addr1 ;Accessing r4 and addr1
• ld  r2, addr2 ;Fetching instruction
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Notes on Pipelining Instruction 
Processing

• Pipeline stages are shown top to bottom in order 
traversed by one instruction

• Instructions listed in order they are fetched
• Order of instructions in pipeline is reverse of listed
• If each stage takes 1 clock:

• every instruction takes 5 clocks to complete
• some instruction completes every clock tick

• Two performance issues:  instruction latency and 
instruction bandwidth
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Dependence Among Instructions

• Execution of some instructions can depend on the 
completion of others in the pipeline

• One solution is to “stall” the pipeline
• early stages stop while later ones complete processing

• Dependences involving registers can be detected and 
data “forwarded” to instruction needing it, without 
waiting for register write

• Dependence involving memory is harder and is 
sometimes addressed by restricting the way the 
instruction set is used

• “Branch delay slot” is example of such a restriction
• “Load delay” is another example
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Branch and Load Delay Examples

Branch Delay

Load Delay

brz r2, r3
add r6, r7, r8
st  r6, addr1

This instruction always executed

Only done if r2 ≠ 0

ld  r2, addr
add r5, r1, r2
shr r1,r1,#4
sub r6, r8, r2

This instruction gets “old”
value of r2

This instruction gets r2 value
loaded from addr

• Working of instructions is not changed, but way they 
work together is
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Characteristics of Pipelined 
Processor Design

• Main memory must operate in one cycle
• This can be accomplished by expensive memory, but
• It is usually done with cache, to be discussed in Chap. 7

• Instruction and data memory must appear separate
• Harvard architecture has separate instruction and data memories
• Again, this is usually done with separate caches

• Few buses are used
• Most connections are point to point
• Some few-way multiplexers are used

• Data is latched (stored in temporary registers) at each 
pipeline stage—called “pipeline registers”

• ALU operations take only 1 clock (esp. shift)
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Adapting Instructions to Pipelined 
Execution

• All instructions must fit into a common pipeline stage 
structure

• We use a 5-stage pipeline for the SRC
     (1) Instruction fetch
     (2) Decode and operand access
     (3) ALU operations
     (4) Data memory access
     (5) Register write
• We must fit load/store, ALU, and branch instructions 

into this pattern
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Fig 5.2   ALU 
Instructions
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Logic Expressions Defining 
Pipeline Stage Activity

branch := br ∨  brl :
cond := (IR2〈2..0〉 = 1) ∨ (( IR2〈2..1〉=1)∧( IR2〈0〉⊕ R[rb]=0)) ∨
         ((IR2〈2..1〉=2)∧( IR2〈0〉⊕ R[rb]〈31〉) :
sh := shr ∨ shra ∨  shl ∨  shc :
alu := add ∨  addi ∨ sub ∨  neg ∨  and ∨  andi ∨  or ∨  ori ∨  not ∨  sh :
imm := addi ∨  andi ∨  ori ∨  (sh ∧  (IR2〈4..0〉 ≠ 0) ):
load := ld ∨ ldr :
ladr := la ∨  lar :
store := st ∨  str :
l-s := load ∨  ladr ∨  store :
regwrite := load ∨  ladr ∨  brl ∨  alu:  Instructions that write to the register file
dsp := ld ∨  st ∨  lar :  Instructions that use disp addressing
rl := ldr ∨  str ∨  lar :  Instructions that use rel addressing
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Notes on the Equations and 
Different Stages

• The logic equations are based on the instruction in the 
stage where they are used

• When necessary, we append a digit to a logic signal 
name to specify it is computed from values in that 
stage

• Thus regwrite5 is true when the opcode in stage 5 is 
load5 ∨ ladr5 ∨  brl5 ∨ alu5, all of which are determined 
from op5
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Fig 5.4  The 
Memory 
Access 
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Fig 5.5  The 
Branch 

Instructions
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Fig 5.6  The 
SRC Pipeline 
Registers and 

RTN 
Specification
• The pipeline 

registers pass 
information from 
stage to stage

• RTN specifies 
output register 
values in terms of 
input register 
values for stage
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Global State of the Pipelined SRC

• PC, the general registers, instruction memory, and data 
memory represent the global machine state

• PC is accessed in stage 1 (and stage 2 on branch)
• Instruction memory is accessed in stage 1
• General registers are read in stage 2 and written in 

stage 5
• Data memory is only accessed in stage 4
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Restrictions on Access to Global 
State by Pipeline

• We see why separate instruction and data memories (or 
caches) are needed

• When a load or store accesses data memory in stage 4, 
stage 1 is accessing an instruction

• Thus two memory accesses occur simultaneously

• Two operands may be needed from registers in stage 2 
while another instruction is writing a result register in 
stage 5

• Thus as far as the registers are concerned, 2 reads and a 
write happen simultaneously

• Increment of PC in stage 1 must be overridden by a 
successful branch in stage 2
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Example of Propagation of 
Instructions Through Pipe

• It is assumed that R[11] contains 512 when the brl 
instruction is executed

• R[6] = 4 and R[8] = 5 are the add operands
• R[5] =16 for the ld and R[12] = 23 for the str

100: add r4, r6, r8; R[4] ← R[6] + R[8]
104: ld r7, 128(r5); R[7] ← M[R[5]+128]
108: brl r9, r11, 001; PC ← R[11]: R[9] ← PC
112: str r12, 32; M[PC+32] ← R[12]
 . . . . . .
512: sub ... next instr. ...
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Fig 5.8  
First Clock 
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Fig 5.9  
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Fig 5.10  
Third Clock 
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Fig 5.11  
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Fig 5.12  
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Functions of the Pipeline 
Registers in SRC

• Registers between stages 1 and 2:
• I2 holds full instruction including any register fields and 

constant
• PC2 holds the incremented PC from instruction fetch

• Registers between stages 2 and 3:
• I3 holds opcode and ra (needed in stage 5)
• X3 holds PC or a register value (for link or 1st ALU operand)
• Y3 holds c1 or c2 or a register value as 2nd ALU operand
• MD3 is used for a register value to be stored in memory
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Functions of the Pipeline 
Registers in SRC (cont’d)

• Registers between stages 3 and 4:
• I4 has op code and ra
• Z4 has memory address or result register value
• MD4 has value to be stored in data memory

• Registers between stages 4 and 5:
• I5 has opcode and destination register number, ra
• Z5 has value to be stored in destination register: from 

ALU result, PC link value, or fetched data
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Functions of the SRC 
Pipeline Stages

• Stage 1: fetches instruction
• PC incremented or replaced by successful branch in 

stage 2

• Stage 2: decodes instruction and gets operands
• Load or store gets operands for address computation
• Store gets register value to be stored as 3rd operand
• ALU operation gets 2 registers or register and constant

• Stage 3: performs ALU operation
• Calculates effective address or does arithmetic/logic
• May pass through link PC or value to be stored in 

memory
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Functions of the SRC Pipeline 
Stages (cont’d)

• Stage 4: accesses data memory
• Passes Z4 to Z5 unchanged for nonmemory instructions
• Load fills Z5 from memory
• Store uses address from Z4 and data from MD4 (no 

longer needed)

• Stage 5: writes result register
• Z5 contains value to be written, which can be ALU result, 

effective address, PC link value, or fetched data
• ra field always specifies result register in SRC
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Dependence Between Instructions 
in Pipe: Hazards

• Instructions that occupy the pipeline together are being 
executed in parallel

• This leads to the problem of instruction dependence, 
well known in parallel processing

• The basic problem is that an instruction depends on 
the result of a previously issued instruction that is not 
yet complete

• Two categories of hazards
• Data hazards: incorrect use of old and new data
• Branch hazards: fetch of wrong instruction on a change 

in PC
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Classification of Data Hazards

• A read after write hazard (RAW) arises from a flow 
dependence, where an instruction uses data produced 
by a previous one

• A write after read hazard (WAR) comes from an anti-
dependence, where an instruction writes a new value 
over one that is still needed by a previous instruction

• A write after write hazard (WAW) comes from an output 
dependence, where two parallel instructions write the 
same register and must do it in the order in which they 
were issued
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Data Hazards in SRC

• Since all data memory access occurs in stage 4, memory 
writes and reads are sequential and give rise to no 
hazards

• Since all registers are written in the last stage, WAW and 
WAR hazards do not occur

• Two writes always occur in the order issued, and a write 
always follows a previously issued read

• SRC hazards on register data are limited to RAW hazards 
coming from flow dependence

• Values are written into registers at the end of stage 5 but 
may be needed by a following instruction at the 
beginning of stage 2
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Possible Solutions to the Register 
Data Hazard Problem

• Detection:
• The machine manual could list rules specifying that a 

dependent instruction cannot be issued less than a given 
number of steps after the one on which it depends

• This is usually too restrictive
• Since the operation and operands are known at each stage, 

dependence on a following stage can be detected

• Correction:
• The dependent instruction can be “stalled” and those ahead 

of it in the pipeline allowed to complete
• Result can be “forwarded” to a following inst. in a previous 

stage without waiting to be written into its register

• Preferred SRC design will use detection, forwarding and 
stalling only when unavoidable
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Detecting Hazards and 
Dependence Distance

• To detect hazards, pairs of instructions must be 
considered

• Data is normally available after being written to register
• Can be made available for forwarding as early as the stage 

where it is produced
• Stage 3 output for ALU results, stage 4 for memory fetch

• Operands normally needed in stage 2
• Can be received from forwarding as late as the stage in 

which they are used
• Stage 3 for ALU operands and address modifiers, stage 4 for 

stored register, stage 2 for branch target
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Instruction Pair Hazard Interaction

Class alu load ladr brl
  N/E 6/4 6/5 6/4 6/2Class N/L

alu 2/3
load 2/3
ladr 2/3
store 2/3
branch 2/2

4/1 4/2 4/1 4/1
4/1 4/2 4/1 4/1
4/1 4/2 4/1 4/1
4/1 4/2 4/1 4/1
4/2 4/3 4/2 4/1

Result Normally/Earliest available

Value
Normally/
Latest
needed

Instruction separation to eliminate
hazard, Normal/Forwarded

• Latest needed stage 3 for store is based on address 
modifier register. The stored value is not needed until 
stage 4

• Store also needs an operand from ra. See Text Tbl 5.1

Read from 
Reg. File

Write to Reg. File
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Delays Unavoidable by Forwarding

• In the Table 5.1 “Load” column, we see the value 
loaded cannot be available to the next instruction, even 
with forwarding

• Can restrict compiler not to put a dependent instruction 
in the next position after a load (next 2 positions if the 
dependent instruction is a branch)

• Target register cannot be forwarded to branch from the 
immediately preceding instruction

• Code is restricted so that branch target must not be 
changed by instruction preceding branch (previous 2 
instructions if loaded from memory)

• Do not confuse this with the branch delay slot, which is a 
dependence of instruction fetch on branch, not a 
dependence of branch on something else
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Stalling the Pipeline on 
Hazard Detection

• Assuming hazard detection, the pipeline can be stalled 
by inhibiting earlier stage operation and allowing later 
stages to proceed

• A simple way to inhibit a stage is a pause signal that 
turns off the clock to that stage so none of its output 
registers are changed

• If stages 1 and 2, say, are paused, then something 
must be delivered to stage 3 so the rest of the pipeline 
can be cleared

• Insertion of nop into the pipeline is an obvious choice
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Example of Detecting ALU Hazards 
and Stalling Pipeline

• The following expression detects hazards between 
ALU instructions in stages 2 and 3 and stalls the 
pipeline

( alu3 ∧ alu2 ∧  ((ra3 = rb2) ∨ (ra3 = rc2) ∧¬  imm2 ) ) →
( pause2: pause1: op3 ← 0 ):

• After such a stall, the hazard will be between stages 2 
and 4, detected by

( alu4 ∧ alu2 ∧ ((ra4 = rb2) ∨ (ra4 = rc2) ∧¬  imm2 ) ) →
( pause2: pause1: op3 ← 0 ):

• Hazards between stages 2 & 5 require
( alu5 ∧ alu2 ∧  ((ra5 = rb2) ∨ (ra5 = rc2) ∧¬  imm2 ) ) →

( pause2: pause1: op3 ← 0 ):
pause1

pause2

To stage 1

Ck

To stage 2
Fig 5.13  Pipeline 
Clocking Signals
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Fig 5.14  Stall Due to a Data 
Dependence Between Two ALU 
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Data Forwarding: 
from ALU Instruction to ALU 

Instruction

• The pair table for data dependencies says that if 
forwarding is done, dependent ALU instructions can be 
adjacent, not 4 apart

• For this to work, dependences must be detected and 
data sent from where it is available directly to X or Y 
input of ALU

• For a dependence of an ALU instruction in stage 3 on 
an ALU instruction in stage 5 the equation is

        alu5 ∧ alu3 → ((ra5 = rb3) → X ← Z5:
                             (ra5 = rc3) ∧¬ imm3 → Y ← Z5 ):
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Data Forwarding:
ALU to ALU Instruction (cont’d)

• For an ALU instruction in stage 3 depending on one in 
stage 4, the equation is

        alu4 ∧ alu3 → ((ra4 = rb3) → X ← Z4:
                             (ra4 = rc3) ∧ ¬ imm3 → Y ← Z4 ):
• We can see that the rb and rc fields must be available 

in stage 3 for hazard detection
• Multiplexers must be put on the X and Y inputs to the 

ALU so that Z4 or Z5 can replace either X3 or Y3 as 
inputs
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Fig 5.15  
Hazard 

Detection 
and 

Forwarding

©1996 Vincent P. Heuring and Harry F. Jordan
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Restrictions Left If Forwarding 
Done Wherever Possible

(1) Branch delay slot
• The instruction after a branch is always executed, 

whether the branch succeeds or not.
(2) Load delay slot
• A register loaded from memory cannot be used 

as an operand in the next instruction.
• A register loaded from memory cannot be used 

as a branch target for the next two instructions.
(3) Branch target
• Result register of ALU or ladr instruction cannot 

be used as branch target by the next instruction.

br r4
add . . .
 • • •

ld r4, 4(r5)
nop
neg r6, r4

ld r0, 1000
nop
nop
br r0

not r0, r1
nop
br r0
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Questions for Discussion

• How and when would you debug this design?
• How does RTN and similar Hardware Description 

Languages fit into testing and debugging?
• What tools would you use, and which stage?
• What kind of software test routines would you use?
• How would you correct errors at each stage in the 

design?
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Instruction-Level Parallelism

• A pipeline that is full of useful instructions completes at 
most one every clock cycle

• Sometimes called the Flynn limit

• If there are multiple function units and multiple 
instructions have been fetched, then it is possible to 
start several at once

• Two approaches are: superscalar
• Dynamically issue as many prefetched instructions to idle 

function units as possible

• and Very Long Instruction Word (VLIW)
• Statically compile long instruction words with many 

operations in a word, each for a different function unit
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Character of the Function Units in 
Multiple Issue Machines

• There may be different types of function units
• Floating-point
• Integer
• Branch

• There can be more than one of the same type
• Each function unit is itself pipelined
• Branches become more of a problem

• There are fewer clock cycles between branches
• Branch units try to predict branch direction
• Instructions at branch target may be prefetched, and even 

executed speculatively, in hopes the branch goes that way
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Microprogramming: Basic Idea

• Control unit job is to generate the sequence of control 
signals

• How about building a computer to do this?

Step Concrete RTN Control Sequence
T0 MA ← PC: C ← PC + 4; PCout, MAin, INC4, Cin, Read
T1 MD ← M[MA]: PC ← C; Cout, PCin, Wait
T2 IR ← MD; MDout, IRin

T3 A ← R[rb]; Grb, Rout, Ain
T4 C ← A + R[rc]; Grc, Rout, ADD, Cin
T5 R[ra] ← C; Cout, Gra, Rin, End

• Recall control sequence for 1-bus SRC
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The Microcode Engine

• A computer to generate control signals is much 
simpler than an ordinary computer

• At the simplest, it just reads the control signals in 
order from a read-only memory

• The memory is called the control store
• A control store word, or microinstruction, contains a 

bit pattern telling which control signals are true in a 
specific step

• The major issue is determining the order in which 
microinstructions are read
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Fig 5.16  Block Diagram of 
Microcoded Control Unit
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Parts of the Microprogrammed 
Control Unit

• Since the control signals are just read from memory, 
the main function is sequencing

• This is reflected in the several ways the µPC can be 
loaded

• Output of incrementer—µPC + 1
• PLA output—start address for a macroinstruction
• Branch address from µinstruction
• External source—say for exception or reset

• Micro conditional branches can depend on condition 
codes, data path state, external signals, etc.
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Contents of a Microinstruction

• Main component is list of 1/0 control signal values
• There is a branch address in the control store
• There are branch control bits to determine when to use the 

branch address and when to use µPC + 1

 

Branch control Control signals Branch address

P
C

ou
t

M
A

in

P
C

in

C
ou

t

A
in

E
nd

Microinstruction format
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 Fig 5.17  The Control Store
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Tbl 5.2  Control Signals for the 
add Instruction

• Addresses 101–103 are the instruction fetch
• Addresses 200–202 do the add
• Change of µcontrol from 103 to 200 uses a kind of 

µbranch

.

1 0 1
1 0 2
1 0 3
2 0 0
2 0 1
2 0 2

• • •
• • •
• • •
• • •
• • •
• • •

1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0
0
0

0 0 1 1 10 0 0 0 0 0 0 0 0 0 0 0
1 1 1 10 0 0 0 0 0 0 00 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 01 1
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Uses for µbranching in the 
Microprogrammed Control Unit

(1) Branch to start of µcode for a specific inst.
(2) Conditional control signals, e.g. CON → PCin

(3) Looping on conditions, e.g. n ≠ 0 → ... Goto6
• Conditions will control µbranches instead of being 

ANDed with control signals
• Microbranches are frequent and control store addresses 

are short, so it is reasonable to have a µbranch address 
field in every µ instruction
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Illustration of µbranching 
Control Logic

• We illustrate a µbranching control scheme by a machine 
having condition code bits N and Z

• Branch control has 2 parts:
(1) selecting the input applied to the µPC and
(2) specifying whether this input or µPC + 1 is used

• We allow 4 possible inputs to µPC
• The incremented value µPC + 1
• The PLA lookup table for the start of a macroinstruction
• An externally supplied address
• The branch address field in the µinstruction word
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Fig 5.18  Branching Controls in the 
Microcoded Control Unit
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Some Possible µbranches Using 
the Illustrated Logic (Refer to Tbl 5.3)

• If the control signals are all zero, the µinstruction only does 
a test

• Otherwise test is combined with data path activity

.
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Branch
Address Branching act ion
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• In horizontal microcode, each control signal is 
represented by a bit in the µinstruction

• In vertical microcode, a set of true control signals is 
represented by a shorter code

• The name horizontal implies fewer control store words 
of more bits per word

• Vertical µcode only allows RTs in a step for which 
there is a vertical µinstruction code

• Thus vertical µcode may take more control store words 
of fewer bits

Horizontal versus Vertical 
Microcode Schemes
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Fig 5.19  A Somewhat Vertical 
Encoding
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Fig  5.20  Completely Horizontal and 
Vertical Microcoding
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Saving Control Store Bits with 
Horizontal Microcode

• Some control signals cannot possibly be true at the same 
time

• One and only one ALU function can be selected
• Only one register out gate can be true with a single bus
• Memory read and write cannot be true at the same step

• A set of m such signals can be encoded using log2m bits 
(log2(m + 1) to allow for no signal true)

• The raw control signals can then be generated by a k to 2k 
decoder, where 2k ≥ m (or 2k ≥ m + 1)

• This is a compromise between horizontal and vertical 
encoding
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A Microprogrammed Control Unit 
for the 1-Bus SRC

• Using the 1-bus SRC data path design gives a specific set 
of control signals

• There are no condition codes, but data path signals CON 
and n = 0 will need to be tested

• We will use µbranches BrCON, Brn = 0, and Brn ≠ 0
• We adopt the clocking logic of Fig. 4.14
• Logic for exception and reset signals is added to the 

microcode sequencer logic
• Exception and reset are assumed to have been 

synchronized to the clock
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Tbl 5.4  The add Instruction

• Microbranching to the output of the PLA is shown at 102
• Microbranch to 100 at 202 starts next fetch
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Getting the PLA Output in Time for 
the Microbranch

• For the input to the PLA to be correct for the µbranch in 
102, it has to come from MD, not IR

• An alternative is to use see-through latches for IR so the 
opcode can pass through IR to PLA before the end of the 
clock cycle
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See-Through Latch Hardware for IR 
So µPC Can Load Immediately
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Fig 5.21  SRC Microcode Sequencer
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Tbl 5.6  Somewhat Vertical 
Encoding of the SRC 
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Other Microprogramming Issues

• Multiway branches: often an instruction can have 4–8 
cases, say address modes

• Could take 2–3 successive µbranches, i.e. clock pulses
• The bits selecting the case can be ORed into the branch 

address of the µinstruction to get a several way branch
• Say if 2 bits were ORed into the 3rd and 4th bits from the low 

end, 4 possible addresses ending in 0000, 0100, 1000, and 
1100 would be generated as branch targets

• Advantage is a multiway branch in one clock

• A hardware push-down stack for the µPC can turn 
repeated µsequences into µsubroutines

• Vertical µcode can be implemented using a horizontal 
µengine, sometimes called nanocode
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Chapter 5 Summary

• This chapter has dealt with some alternative ways of 
designing a computer

• A pipelined design is aimed at making the computer fast—
target of one instruction per clock

• Forwarding, branch delay slot, and load delay slot are steps 
in approaching this goal

• More than one issue per clock is possible, but beyond the 
scope of this text

• Microprogramming is a design method with a target of 
easing the design task and allowing for easy design change 
or multiple compatible implementations of the same 
instruction set


