
5-1 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Chapter 5: Processor Design—
Advanced Topics

Topics

5.1 Pipelining
• A pipelined design of SRC
• Pipeline hazards

5.2 Instruction-Level Parallelism
• Superscalar processors
• Very Long Instruction Word (VLIW) machines

5.3 Microprogramming
• Control store and microbranching
• Horizontal and vertical microprogramming

5-2 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 5.1 Executing Machine Instructions
versus Manufacturing Small Parts

Memory

access

ALU

operation

Fetch

operands

Fetch

instruction

Instruction

interpretation

and execution

Register

write

add r4, r3, r2

Part

manufacture

Make end plate

Memory

access

ALU

operation

Fetch

operands

Fetch

instruction

Instruction

interpretation

and execution

Register

write

(a) Without pipelining/assembly line (b) With pipelining/assembly line

Polish

part

Cut

part

Drill

part

Select

part

Part

manufacture

Package

part

Polish

part

Cut

part

Drill

part

Select

part

Package

part

Bottom

plate

Top

plate

End

plate

Cover

plate

Center

plate

sub r2, r5, 1

add r4, r3, r2

st r4, addr1

Id r2, addr2

shr r3, r3, 2

5-3 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

The Pipeline Stages

• 5 pipeline stages are shown
• 1. Fetch instruction
• 2. Fetch operands
• 3. ALU operation
• 4. Memory access
• 5. Register write

• 5 instructions are executing
• shr r3, r3, #2 ;Storing result into r3
• sub r2, r5, #1 ;Idle—no memory access needed
• add r4, r3, r2 ;Performing addition in ALU
• st r4, addr1 ;Accessing r4 and addr1
• ld r2, addr2 ;Fetching instruction

5-4 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Notes on Pipelining Instruction
Processing

• Pipeline stages are shown top to bottom in order
traversed by one instruction

• Instructions listed in order they are fetched
• Order of instructions in pipeline is reverse of listed
• If each stage takes 1 clock:

• every instruction takes 5 clocks to complete
• some instruction completes every clock tick

• Two performance issues: instruction latency and
instruction bandwidth

5-5 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Dependence Among Instructions

• Execution of some instructions can depend on the
completion of others in the pipeline

• One solution is to “stall” the pipeline
• early stages stop while later ones complete processing

• Dependences involving registers can be detected and
data “forwarded” to instruction needing it, without
waiting for register write

• Dependence involving memory is harder and is
sometimes addressed by restricting the way the
instruction set is used

• “Branch delay slot” is example of such a restriction
• “Load delay” is another example

5-6 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Branch and Load Delay Examples

Branch Delay

Load Delay

brz r2, r3
add r6, r7, r8
st r6, addr1

This instruction always executed

Only done if r2 ≠ 0

ld r2, addr
add r5, r1, r2
shr r1,r1,#4
sub r6, r8, r2

This instruction gets “old”
value of r2

This instruction gets r2 value
loaded from addr

• Working of instructions is not changed, but way they
work together is

5-7 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Characteristics of Pipelined
Processor Design

• Main memory must operate in one cycle
• This can be accomplished by expensive memory, but
• It is usually done with cache, to be discussed in Chap. 7

• Instruction and data memory must appear separate
• Harvard architecture has separate instruction and data memories
• Again, this is usually done with separate caches

• Few buses are used
• Most connections are point to point
• Some few-way multiplexers are used

• Data is latched (stored in temporary registers) at each
pipeline stage—called “pipeline registers”

• ALU operations take only 1 clock (esp. shift)

5-8 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Adapting Instructions to Pipelined
Execution

• All instructions must fit into a common pipeline stage
structure

• We use a 5-stage pipeline for the SRC
 (1) Instruction fetch
 (2) Decode and operand access
 (3) ALU operations
 (4) Data memory access
 (5) Register write
• We must fit load/store, ALU, and branch instructions

into this pattern

5-9 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 5.2 ALU
Instructions

• Instructions fit into 5
stages

• Second ALU operand
comes either from a
register or instruction
register c2 field

• Opcode must be available
in stage 3 to tell ALU what
to do

• Result register, ra, is
written in stage 5

• No memory operation

IR2

ALU operations including shifts

Instruction

memory

1.

Instruction

fetch

2.

Decode

and

operand

read

3.

ALU

operation

4.

Memory

access

5.

ra

write

PC

X3 Y3

Z4

Mp4

op, ra C2〈4..0〉

Inc4

Register file

R[rb] R[rc] R[ra]

regwrite

ra

ALUDecode

5-10 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Logic Expressions Defining
Pipeline Stage Activity

branch := br ∨ brl :
cond := (IR2〈2..0〉 = 1) ∨ ((IR2〈2..1〉=1)∧(IR2〈0〉⊕ R[rb]=0)) ∨
 ((IR2〈2..1〉=2)∧(IR2〈0〉⊕ R[rb]〈31〉) :
sh := shr ∨ shra ∨ shl ∨ shc :
alu := add ∨ addi ∨ sub ∨ neg ∨ and ∨ andi ∨ or ∨ ori ∨ not ∨ sh :
imm := addi ∨ andi ∨ ori ∨ (sh ∧ (IR2〈4..0〉 ≠ 0)):
load := ld ∨ ldr :
ladr := la ∨ lar :
store := st ∨ str :
l-s := load ∨ ladr ∨ store :
regwrite := load ∨ ladr ∨ brl ∨ alu: Instructions that write to the register file
dsp := ld ∨ st ∨ lar : Instructions that use disp addressing
rl := ldr ∨ str ∨ lar : Instructions that use rel addressing

5-11 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Notes on the Equations and
Different Stages

• The logic equations are based on the instruction in the
stage where they are used

• When necessary, we append a digit to a logic signal
name to specify it is computed from values in that
stage

• Thus regwrite5 is true when the opcode in stage 5 is
load5 ∨ ladr5 ∨ brl5 ∨ alu5, all of which are determined
from op5

5-12 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 5.4 The
Memory
Access

Instructions:
ld, ldr, st,
and str

• ALU computes
effective addresses

• Stage 4 does read or
write

• Result register
written only on load

IR2

ld, ldr, la, and lar

Instruction

memory

1.

Instruction

fetch

2.

Decode

and

operand

read

3.

ALU

operation

4.

Memory

access

5.

ra

write

PC

PC2

Y3

Z4

Mp3

op, ra c1〈21..0〉

Inc4

Register file

R[rb] R[rc] R[ra]

regwrite

rac1 c2

Mp5

Mp4

add
ALUDecode

Data

memory

X3

Z5

st and str

Instruction

memory PC

PC2

Y3 MD3

Z4

Mp3

add

op, ra c1〈21..0〉

Inc4

Register file

R[rb] R[rc] R[ra]

regwrite

Mp4

IR2

c1 c2

ALUDecode

Data

memory

X3

5-13 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 5.5 The
Branch

Instructions

• The new program
counter value is known
in stage 2—but not in
stage 1

• Only branch and link
does a register write in
stage 5

• There is no ALU or
memory operation

Branch br and brl

1.

Instruction

fetch

2.

Decode

and

operand

read

3.

ALU

operation

4.

Memory

access

5.

ra

write

PC
Instruction

memory

PC2c2〈2..0〉

Inc4

Register file

R[rb] R[rc] R[ra]

cond

Mp1

IR2

Branch

logic

brl only

ra

op, ra

5-14 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 5.6 The
SRC Pipeline
Registers and

RTN
Specification
• The pipeline

registers pass
information from
stage to stage

• RTN specifies
output register
values in terms of
input register
values for stage

• Discuss RTN at
each stage on
blackboard

Z4 MD4

Z5IR5

IR4

1.

Instruction

fetch

3.

ALU

operation

4.

Memory

access

5.

Register

write

Instruction

memory

IR2 ← M[PC] :

PC2 ← PC + 4 ;

PC + 4

R[rb]

PC

op ra rb rc c1 c2 PC2

X3IR3 Y3 MD3

X3 ← l-s2 → (rel2 → PC2 : disp2 → R[rb]) :

Z4 ← (l-s3 → X3 + Y3 :

MD4 ← MD3 :
IR4 ← IR3 ;

brl3 → X3 :
alu3 → X3 op Y3) :

Z5 ← (load4 → M[Z4]:

regwrite5 → (R[ra] ← Z5) ;

store4 → (M[Z4] ← MD4) :
IR5 ← IR4 ;

ladr4 ∨ branch4 ∨ alu4 → Z4) :

brl2 → PC2 : alu2 → R[rb] :

¬cond(IR2, R[rc]) → PC + 4) ;

Y3 ← l-s2 → (rel2 → c1 : disp2 → c2) :

MD3 ← store2 → R[ra] : IR3← IR2 : stop2 → Run ← 0 :
PC ← ¬branch2 → PC + 4 : branch2 → (cond(IR2, R[rc]) → R[rb] ;

branch2 → : alu2 → (imm2 → c2 : ¬imm2→ R[rc]) :

rb R[rb] rc
Register file

R[rc] R[ra]
ra

2.

Decode

and

operand

read

Data

memory

IR2

5-15 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Global State of the Pipelined SRC

• PC, the general registers, instruction memory, and data
memory represent the global machine state

• PC is accessed in stage 1 (and stage 2 on branch)
• Instruction memory is accessed in stage 1
• General registers are read in stage 2 and written in

stage 5
• Data memory is only accessed in stage 4

5-16 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Restrictions on Access to Global
State by Pipeline

• We see why separate instruction and data memories (or
caches) are needed

• When a load or store accesses data memory in stage 4,
stage 1 is accessing an instruction

• Thus two memory accesses occur simultaneously

• Two operands may be needed from registers in stage 2
while another instruction is writing a result register in
stage 5

• Thus as far as the registers are concerned, 2 reads and a
write happen simultaneously

• Increment of PC in stage 1 must be overridden by a
successful branch in stage 2

5-17 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 5.7
The

Pipeline
Data

Path with
Selected
Control
Signals

• Most
control
signals
shown
and
given
values

• Multi-
plexer
control is
stressed
in this
figure

Instruction

memory

1.

Instruction

fetch

2.

Decode

and

operand

read

3.

ALU

operation

4.

Memory

access

5.

Register

write

PC

PC2

Y3

MD4
Data

memory

IR3

Z4IR4

Mp3

Mp5

ALU

op’n

addr

op ra rb rc c1 c2

Inc4

Register file
a1 R1 a2 R2 a3 R3

Mp4

Mp2 ←

Mp3 ←

Mp4 ←

condMp2

Mp1

Mp1 ← (¬(branch2 cond) → lnc4):

(¬store → rc):

(store → ra):
(rl ∨ branch → PC2):

(dsp ∨ alu → R1):
(rl → c1):

(dsp ∨ imm → c2):

(alu ∧ 71mm ¬imm → R2):

Mp5 ← (¬load → Z4):

(load → mem data):

IR2

ALUDecode

X3

ra
rc

rb

c2〈2..0〉

G1
GA1
G2

W3

op ra

ra

Branch

logic

op

Decode load/store

Z5
ra

value
load ∨ ladr ∨ brl ∨ alu

op
Decode

∨

((branch2 cond) → PC2):∨

IR5

MD3

c2
c1

5-18 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Example of Propagation of
Instructions Through Pipe

• It is assumed that R[11] contains 512 when the brl
instruction is executed

• R[6] = 4 and R[8] = 5 are the add operands
• R[5] =16 for the ld and R[12] = 23 for the str

100: add r4, r6, r8; R[4] ← R[6] + R[8]
104: ld r7, 128(r5); R[7] ← M[R[5]+128]
108: brl r9, r11, 001; PC ← R[11]: R[9] ← PC
112: str r12, 32; M[PC+32] ← R[12]

512: sub ... next instr. ...

5-19 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 5.8
First Clock
Cycle: add

Enters
Stage 1 of
Pipeline

• Program
counter is
incremented to
104

512: sub ...

112: str r12, #32
108: brl r9, r11, 001
104: ld r7, r5, #128
100: add r4, r6, r8

Instruction

memory

1.

Instruction

fetch

2.

Decode

and

operand

read

3.

ALU

operation

4.

Memory

access

5.

ra

write

100

PC2

Y3 MD3

MD4
Data

memory

IR3

Z4IR4

Mp3

Mp5

load/store

ALU

op’n

addr

op ra rb rc c1 c2

Inc4

Register file
a1 R1 a2 R2 a3 R3

Mp4

condMp2

Mp1

ALUDecode

X3

ra
c2

c1

rc

rb

c2〈2..0〉

G1
GA1
G2

W3

op ra

ra

Branch

logic

op

Decode

Z5
ra

value
load ∨ lader ∨ brl ∨ alu

op
Decode

100: add r4, r6, r8 104

104

IR2

PC

IR5

5-20 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 5.9
Second Clock

Cycle: add
Enters Stage
2, While 1d is
Being Fetched

at Stage 1

• add operands
are fetched in
stage 2

512: sub ...

112: str r12, #32
108: brl r9, r11, 001
104: ld r7, r5, #128
100: add r4, r6, r8

Instruction

memory

1.

Instruction

fetch

2.

Decode

and

operand

read

3.

ALU

operation

4.

Memory

access

5.

ra

write

104

PC2
104

Y3 MD3

MD4
Data

memory

IR3

Z4IR4

Mp3

Mp5

load/store

ALU

op’n

addr

add r4, r6, r8

Inc4

Register file
r6 4 r8 5 a3 R3

Mp4

condMp2

Mp1

ALUDecode

X3

ra
c2

c1

rc

rb

c2〈2..0〉

G1
GA1
G2

W3

op ra

ra

Branch

logic

op

Decode

Z5
ra

value
load ∨ lader ∨ brl ∨ alu

op
Decode

IR5

104: ld r7 , r5, 128 108

4
5

add r4

108

IR2

PC

5-21 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 5.10
Third Clock
Cycle: brl
Enters the
Pipeline

• add
performs its
arithmetic in
stage 3

512: sub ...

112: str r12, #32
108: brl r9, r11, 001
104: ld r7, r5, #128
100: add r4, r6, r8

op ra

Instruction

memory

1.

Instruction

fetch

2.

Decode

and

operand

read

3.

ALU

operation

4.

Memory

access

5.

ra

write

108

PC2
108

MD3

MD4
Data

memory

add �r4

Z4IR4

Mp3

Mp5

load/store

addr

ld r7 ,r5, 128

Inc4

a1 R1
r5 16

a2 R2 a3 R3

Mp4

condMp2

Mp1

ALUDecode

ra
c2

c1

rc

c2〈2..0〉

G1
GA1
G2

W3

ra

Branch

logic

op

Decode

Z5
ra

value
load ∨ lader ∨ brl ∨ alu

op
Decode

112

16 128

ld r7

add r4 9

add

112

IR2

IR3

PC

108: brl r9 , r11, 001

rb

X3 Y34 5

IR5

5-22 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 5.11
Fourth Clock
Cycle: str
Enters the
Pipeline

• add is idle in
stage 4

• Success of brl
changes program
counter to 512

512: sub ...

112: str r12, #32
108: brl r9, r11, 001
104: ld r7, r5, #128
100: add r4, r6, r8

raop

Instruction

memory

1.

Instruction

fetch

2.

Decode

and

operand

read

3.

ALU

operation

4.

Memory

access

5.

ra

write

112

PC2
112

MD3

MD4
Data

memory

ld r7

add

Mp3

Mp5

load/store

addr

brl r9 , r11 001

Inc4

a1 R1
r11 512

a2 R2 a3 R3

Mp4

condMp2

Mp1

ALUDecode

ra

c1

rc

c2〈2..0〉=001

G1
GA1
G2

W3

op ra

Branch

logic

r7

9

ld

add r4

Decode

Z5
ra

value
load ∨ lader ∨ brl ∨ alu

op
Decode

IR5

IR4

IR3

116

112

brl r9

op ra rb rc c1 c2

144

add

512

512

IR2

PC

112: str r12, 32

rb

X3 Y316 128

r4 Z4 9

5-23 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 5.12
Fifth Clock
Cycle: add
Completes,

sub Enters the
Pipeline

• add completes in
stage 5

• sub is fetched from
location 512 after
successful brl

512: sub ...

112: str r12, #32
108: brl r9, r11, 001
104: ld r7, r5, #128
100: add r4, r6, r8 load ∨ lader ∨ brl ∨ alu

op ra

r12

op ra rc

value

raop

Instruction

memory

1.

Instruction

fetch

2.

Decode

and

operand

read

3.

ALU

operation

4.

Memory

access

5.

ra

write

512

PC2
116

MD3

MD4
Data

memory

brl r9

ld

Mp3

Mp5

load/store

addr

read

str r12, 32

Inc4

a1 R1
r12 23
a2 R2 a3 R3

Mp4

condMp2

Mp1

ALUDecode

r12
rc

c2〈2..0〉

G1
GA1
G2

W3

Branch

logic

r9brl

r7

Decode

9

Decode

516

32
23

116

str

rb c1 c2

112

55

55

144

Z = X

516

IR2

IR3

IR4

IR5

PC

512: sub, ...

rb

X3

X
Z

Y

Y3112 XXX

r7

add r4

Z4 144

r4 9

ld

r4
Z5

5-24 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Functions of the Pipeline
Registers in SRC

• Registers between stages 1 and 2:
• I2 holds full instruction including any register fields and

constant
• PC2 holds the incremented PC from instruction fetch

• Registers between stages 2 and 3:
• I3 holds opcode and ra (needed in stage 5)
• X3 holds PC or a register value (for link or 1st ALU operand)
• Y3 holds c1 or c2 or a register value as 2nd ALU operand
• MD3 is used for a register value to be stored in memory

5-25 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Functions of the Pipeline
Registers in SRC (cont’d)

• Registers between stages 3 and 4:
• I4 has op code and ra
• Z4 has memory address or result register value
• MD4 has value to be stored in data memory

• Registers between stages 4 and 5:
• I5 has opcode and destination register number, ra
• Z5 has value to be stored in destination register: from

ALU result, PC link value, or fetched data

5-26 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Functions of the SRC
Pipeline Stages

• Stage 1: fetches instruction
• PC incremented or replaced by successful branch in

stage 2

• Stage 2: decodes instruction and gets operands
• Load or store gets operands for address computation
• Store gets register value to be stored as 3rd operand
• ALU operation gets 2 registers or register and constant

• Stage 3: performs ALU operation
• Calculates effective address or does arithmetic/logic
• May pass through link PC or value to be stored in

memory

5-27 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Functions of the SRC Pipeline
Stages (cont’d)

• Stage 4: accesses data memory
• Passes Z4 to Z5 unchanged for nonmemory instructions
• Load fills Z5 from memory
• Store uses address from Z4 and data from MD4 (no

longer needed)

• Stage 5: writes result register
• Z5 contains value to be written, which can be ALU result,

effective address, PC link value, or fetched data
• ra field always specifies result register in SRC

5-28 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Dependence Between Instructions
in Pipe: Hazards

• Instructions that occupy the pipeline together are being
executed in parallel

• This leads to the problem of instruction dependence,
well known in parallel processing

• The basic problem is that an instruction depends on
the result of a previously issued instruction that is not
yet complete

• Two categories of hazards
• Data hazards: incorrect use of old and new data
• Branch hazards: fetch of wrong instruction on a change

in PC

5-29 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Classification of Data Hazards

• A read after write hazard (RAW) arises from a flow
dependence, where an instruction uses data produced
by a previous one

• A write after read hazard (WAR) comes from an anti-
dependence, where an instruction writes a new value
over one that is still needed by a previous instruction

• A write after write hazard (WAW) comes from an output
dependence, where two parallel instructions write the
same register and must do it in the order in which they
were issued

5-30 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Data Hazards in SRC

• Since all data memory access occurs in stage 4, memory
writes and reads are sequential and give rise to no
hazards

• Since all registers are written in the last stage, WAW and
WAR hazards do not occur

• Two writes always occur in the order issued, and a write
always follows a previously issued read

• SRC hazards on register data are limited to RAW hazards
coming from flow dependence

• Values are written into registers at the end of stage 5 but
may be needed by a following instruction at the
beginning of stage 2

5-31 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Possible Solutions to the Register
Data Hazard Problem

• Detection:
• The machine manual could list rules specifying that a

dependent instruction cannot be issued less than a given
number of steps after the one on which it depends

• This is usually too restrictive
• Since the operation and operands are known at each stage,

dependence on a following stage can be detected

• Correction:
• The dependent instruction can be “stalled” and those ahead

of it in the pipeline allowed to complete
• Result can be “forwarded” to a following inst. in a previous

stage without waiting to be written into its register

• Preferred SRC design will use detection, forwarding and
stalling only when unavoidable

5-32 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Detecting Hazards and
Dependence Distance

• To detect hazards, pairs of instructions must be
considered

• Data is normally available after being written to register
• Can be made available for forwarding as early as the stage

where it is produced
• Stage 3 output for ALU results, stage 4 for memory fetch

• Operands normally needed in stage 2
• Can be received from forwarding as late as the stage in

which they are used
• Stage 3 for ALU operands and address modifiers, stage 4 for

stored register, stage 2 for branch target

5-33 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Instruction Pair Hazard Interaction

Class alu load ladr brl
 N/E 6/4 6/5 6/4 6/2Class N/L

alu 2/3
load 2/3
ladr 2/3
store 2/3
branch 2/2

4/1 4/2 4/1 4/1
4/1 4/2 4/1 4/1
4/1 4/2 4/1 4/1
4/1 4/2 4/1 4/1
4/2 4/3 4/2 4/1

Result Normally/Earliest available

Value
Normally/
Latest
needed

Instruction separation to eliminate
hazard, Normal/Forwarded

• Latest needed stage 3 for store is based on address
modifier register. The stored value is not needed until
stage 4

• Store also needs an operand from ra. See Text Tbl 5.1

Read from
Reg. File

Write to Reg. File

5-34 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Delays Unavoidable by Forwarding

• In the Table 5.1 “Load” column, we see the value
loaded cannot be available to the next instruction, even
with forwarding

• Can restrict compiler not to put a dependent instruction
in the next position after a load (next 2 positions if the
dependent instruction is a branch)

• Target register cannot be forwarded to branch from the
immediately preceding instruction

• Code is restricted so that branch target must not be
changed by instruction preceding branch (previous 2
instructions if loaded from memory)

• Do not confuse this with the branch delay slot, which is a
dependence of instruction fetch on branch, not a
dependence of branch on something else

5-35 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Stalling the Pipeline on
Hazard Detection

• Assuming hazard detection, the pipeline can be stalled
by inhibiting earlier stage operation and allowing later
stages to proceed

• A simple way to inhibit a stage is a pause signal that
turns off the clock to that stage so none of its output
registers are changed

• If stages 1 and 2, say, are paused, then something
must be delivered to stage 3 so the rest of the pipeline
can be cleared

• Insertion of nop into the pipeline is an obvious choice

5-36 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Example of Detecting ALU Hazards
and Stalling Pipeline

• The following expression detects hazards between
ALU instructions in stages 2 and 3 and stalls the
pipeline

(alu3 ∧ alu2 ∧ ((ra3 = rb2) ∨ (ra3 = rc2) ∧¬ imm2)) →
(pause2: pause1: op3 ← 0):

• After such a stall, the hazard will be between stages 2
and 4, detected by

(alu4 ∧ alu2 ∧ ((ra4 = rb2) ∨ (ra4 = rc2) ∧¬ imm2)) →
(pause2: pause1: op3 ← 0):

• Hazards between stages 2 & 5 require
(alu5 ∧ alu2 ∧ ((ra5 = rb2) ∨ (ra5 = rc2) ∧¬ imm2)) →

(pause2: pause1: op3 ← 0):
pause1

pause2

To stage 1

Ck

To stage 2
Fig 5.13 Pipeline
Clocking Signals

5-37 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 5.14 Stall Due to a Data
Dependence Between Two ALU

Instructions
Clock cycle 5

Bloop!

ld r8, addr2

add r1, r2, r3

add r5, r8, r6

nop

nop

Clock cycle 4

Completed

add r1, r2, r3

New

New

Stalled

Stalled
ld r8, addr2

nop

nop

nop

Clock cycle 3

Completed

add r1, r2, r3

New

Stalled

Stalled
ld r8, addr2

nop

nop

add r2, r3, r4

Clock cycle 1 Clock cycle 2

Completed

Register

write

Memory

access

ALU

operation

Fetch

operands

Fetch

instruction

sub r6, r5, #1

add r2, r3, r4

add r1, r2, r3

ld r8, addr2

shr r7, r7, #2

add r1, r2, r3

New

Stalled

Stalled
ld r8, addr2

sub r6, r5, #1

nop

add r2, r3, r4

5-38 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Data Forwarding:
from ALU Instruction to ALU

Instruction

• The pair table for data dependencies says that if
forwarding is done, dependent ALU instructions can be
adjacent, not 4 apart

• For this to work, dependences must be detected and
data sent from where it is available directly to X or Y
input of ALU

• For a dependence of an ALU instruction in stage 3 on
an ALU instruction in stage 5 the equation is

 alu5 ∧ alu3 → ((ra5 = rb3) → X ← Z5:
 (ra5 = rc3) ∧¬ imm3 → Y ← Z5):

5-39 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Data Forwarding:
ALU to ALU Instruction (cont’d)

• For an ALU instruction in stage 3 depending on one in
stage 4, the equation is

 alu4 ∧ alu3 → ((ra4 = rb3) → X ← Z4:
 (ra4 = rc3) ∧ ¬ imm3 → Y ← Z4):
• We can see that the rb and rc fields must be available

in stage 3 for hazard detection
• Multiplexers must be put on the X and Y inputs to the

ALU so that Z4 or Z5 can replace either X3 or Y3 as
inputs

5-40 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 5.15
Hazard

Detection
and

Forwarding

©1996 Vincent P. Heuring and Harry F. Jordan

• Can be from
either Z4 or Z5
to either X or Y
input to ALU

• rb and rc
needed in
stage 3 for
detection

Data

memory

Decode

value

Decode

Instruction

memory

1.

Instruction

fetch

2.

Decode

and

operand

read

3.

ALU

operation

4.

Memory

access

5.

ra

write

PC2

Mp1

MD3

MD4

IR3

IR4

Mp3

Mp5

addr

r/w

Inc4

a1 R1 a2
Register file

R2 a3 R3

Mp4

condMp2

ALU

Hazard

detection and

forward unit

Mp7

rc
ra

c2〈2..0〉

G1
GA1
G2

W3

Branch

logic

Decode

IR2

PC

rb

X
Z

Y

X3 Y3

IR5

op,ra

Z4

Z5

2

op ra rcrb c1 c2

c1
c2

op

op

ra

ra

rb, rc

reg write

Hazard

detection and

forward unit

raop

2

2
Mp6

2

5-41 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Restrictions Left If Forwarding
Done Wherever Possible

(1) Branch delay slot
• The instruction after a branch is always executed,

whether the branch succeeds or not.
(2) Load delay slot
• A register loaded from memory cannot be used

as an operand in the next instruction.
• A register loaded from memory cannot be used

as a branch target for the next two instructions.
(3) Branch target
• Result register of ALU or ladr instruction cannot

be used as branch target by the next instruction.

br r4
add . . .
 • • •

ld r4, 4(r5)
nop
neg r6, r4

ld r0, 1000
nop
nop
br r0

not r0, r1
nop
br r0

5-42 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Questions for Discussion

• How and when would you debug this design?
• How does RTN and similar Hardware Description

Languages fit into testing and debugging?
• What tools would you use, and which stage?
• What kind of software test routines would you use?
• How would you correct errors at each stage in the

design?

5-43 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Instruction-Level Parallelism

• A pipeline that is full of useful instructions completes at
most one every clock cycle

• Sometimes called the Flynn limit

• If there are multiple function units and multiple
instructions have been fetched, then it is possible to
start several at once

• Two approaches are: superscalar
• Dynamically issue as many prefetched instructions to idle

function units as possible

• and Very Long Instruction Word (VLIW)
• Statically compile long instruction words with many

operations in a word, each for a different function unit

5-44 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Character of the Function Units in
Multiple Issue Machines

• There may be different types of function units
• Floating-point
• Integer
• Branch

• There can be more than one of the same type
• Each function unit is itself pipelined
• Branches become more of a problem

• There are fewer clock cycles between branches
• Branch units try to predict branch direction
• Instructions at branch target may be prefetched, and even

executed speculatively, in hopes the branch goes that way

5-45 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Microprogramming: Basic Idea

• Control unit job is to generate the sequence of control
signals

• How about building a computer to do this?

Step Concrete RTN Control Sequence
T0 MA ← PC: C ← PC + 4; PCout, MAin, INC4, Cin, Read
T1 MD ← M[MA]: PC ← C; Cout, PCin, Wait
T2 IR ← MD; MDout, IRin

T3 A ← R[rb]; Grb, Rout, Ain
T4 C ← A + R[rc]; Grc, Rout, ADD, Cin
T5 R[ra] ← C; Cout, Gra, Rin, End

• Recall control sequence for 1-bus SRC

5-46 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

The Microcode Engine

• A computer to generate control signals is much
simpler than an ordinary computer

• At the simplest, it just reads the control signals in
order from a read-only memory

• The memory is called the control store
• A control store word, or microinstruction, contains a

bit pattern telling which control signals are true in a
specific step

• The major issue is determining the order in which
microinstructions are read

5-47 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 5.16 Block Diagram of
Microcoded Control Unit

• Microinstruction has
branch control,
branch address, and
control signal fields

• Microprogram
counter can be set
from several sources
to do the required
sequencing

Sequencer

Ck CCs Other

External

source

IR

2

k n

m

n

n

n

Increment 4–1 Mux

µPC

µIRµBranch

control

Branch

addressControl signals

 PCout, etc.

Control

store

PLA

(computes

start addr)

Opcode

5-48 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Parts of the Microprogrammed
Control Unit

• Since the control signals are just read from memory,
the main function is sequencing

• This is reflected in the several ways the µPC can be
loaded

• Output of incrementer—µPC + 1
• PLA output—start address for a macroinstruction
• Branch address from µinstruction
• External source—say for exception or reset

• Micro conditional branches can depend on condition
codes, data path state, external signals, etc.

5-49 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Contents of a Microinstruction

• Main component is list of 1/0 control signal values
• There is a branch address in the control store
• There are branch control bits to determine when to use the

branch address and when to use µPC + 1

Branch control Control signals Branch address

P
C

ou
t

M
A

in

P
C

in

C
ou

t

A
in

E
nd

Microinstruction format

5-50 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

 Fig 5.17 The Control Store

Microaddress

0

2n-1

µCode for instruction fetch

µCode for add

µCode for br

µCode for shr

a1

a2

a3

 m bits wide

 k µbranch
control bits

 n branch
addr. bits

 c control
signals

• Common
instruction
fetch
sequence

• Separate
sequences for
each (macro)
instruction

• Wide words

5-51 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Tbl 5.2 Control Signals for the
add Instruction

• Addresses 101–103 are the instruction fetch
• Addresses 200–202 do the add
• Change of µcontrol from 103 to 200 uses a kind of

µbranch

.

1 0 1
1 0 2
1 0 3
2 0 0
2 0 1
2 0 2

• • •
• • •
• • •
• • •
• • •
• • •

1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0
0
0

0 0 1 1 10 0 0 0 0 0 0 0 0 0 0 0
1 1 1 10 0 0 0 0 0 0 00 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 01 1

5-52 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Uses for µbranching in the
Microprogrammed Control Unit

(1) Branch to start of µcode for a specific inst.
(2) Conditional control signals, e.g. CON → PCin

(3) Looping on conditions, e.g. n ≠ 0 → ... Goto6
• Conditions will control µbranches instead of being

ANDed with control signals
• Microbranches are frequent and control store addresses

are short, so it is reasonable to have a µbranch address
field in every µ instruction

5-53 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Illustration of µbranching
Control Logic

• We illustrate a µbranching control scheme by a machine
having condition code bits N and Z

• Branch control has 2 parts:
(1) selecting the input applied to the µPC and
(2) specifying whether this input or µPC + 1 is used

• We allow 4 possible inputs to µPC
• The incremented value µPC + 1
• The PLA lookup table for the start of a macroinstruction
• An externally supplied address
• The branch address field in the µinstruction word

5-54 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 5.18 Branching Controls in the
Microcoded Control Unit

• 5 branch
conditions

• NotN
• N
• NotZ
• Z
• Unconditional

• To 1 of 4 places
• Next

µinstruction
• PLA
• External

address
• Branch address

External address

Z N
PLA

2

2

2

2

2

2

2

4–1 Mux

Sequencer

µPCIncr.

Control signals 244100000000

Control

store

Mux control

00

01

10

11

Mux Ctl Select
Increment µPc

PLA

External address

Branch address

 BrUn
BrNotZ

BrZ
BrNotN

BrN

Branch

address

5-55 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Some Possible µbranches Using
the Illustrated Logic (Refer to Tbl 5.3)

• If the control signals are all zero, the µinstruction only does
a test

• Otherwise test is combined with data path activity

.

Cont rol
Signals

Branch
Address Branching act ion

00

01

10

11

11

11

0

1

0 0 0 0

0 0 0 0

0 0 1

1

1

1

0 0

0 0 0 0

0 0 0 0

0 0 0 0

0• • • 0

• • •

• • •

• • •

• • •

• • •

XXX

XXX

XXX

300

206

204

None—next ins truct ion

Branch t o out pu t of PLA

Br if Z t o Ext ern. Addr.

Br if N t o 300 (else next)

Br if N t o 206 (else next)

Br t o 204

5-56 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

• In horizontal microcode, each control signal is
represented by a bit in the µinstruction

• In vertical microcode, a set of true control signals is
represented by a shorter code

• The name horizontal implies fewer control store words
of more bits per word

• Vertical µcode only allows RTs in a step for which
there is a vertical µinstruction code

• Thus vertical µcode may take more control store words
of fewer bits

Horizontal versus Vertical
Microcode Schemes

5-57 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 5.19 A Somewhat Vertical
Encoding

4–16 decoder 3–8 decoder

16 ALU 7 Regout
control

signals

control

signals

F5 F8

ALU

ops field

Register-out

field

µIR

4 3

• Scheme would save (16 + 7) - (4 + 3) = 16 bits/word in the
case illustrated

5-58 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 5.20 Completely Horizontal and
Vertical Microcoding

µPC
Horizontal

control

store

µPC

Vertical

control

store

n to 2n decoder
Data

path

PCout

MAin

Inc4

Cin

P
C

out

M
A

in

Inc4

C
in

5-59 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Saving Control Store Bits with
Horizontal Microcode

• Some control signals cannot possibly be true at the same
time

• One and only one ALU function can be selected
• Only one register out gate can be true with a single bus
• Memory read and write cannot be true at the same step

• A set of m such signals can be encoded using log2m bits
(log2(m + 1) to allow for no signal true)

• The raw control signals can then be generated by a k to 2k
decoder, where 2k ≥ m (or 2k ≥ m + 1)

• This is a compromise between horizontal and vertical
encoding

5-60 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

A Microprogrammed Control Unit
for the 1-Bus SRC

• Using the 1-bus SRC data path design gives a specific set
of control signals

• There are no condition codes, but data path signals CON
and n = 0 will need to be tested

• We will use µbranches BrCON, Brn = 0, and Brn ≠ 0
• We adopt the clocking logic of Fig. 4.14
• Logic for exception and reset signals is added to the

microcode sequencer logic
• Exception and reset are assumed to have been

synchronized to the clock

5-61 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Tbl 5.4 The add Instruction

• Microbranching to the output of the PLA is shown at 102
• Microbranch to 100 at 202 starts next fetch

..

Addr.
Ot her
Cont rol
Signals

Br
Addr. Act ions

100

101

102

200

201

202

• • •

• • •

• • •

• • •

• • •

• • •

XXX

XXX

XXX

XXX

XXX

1 00 R [ra] ← C: µPC ← 1 00;

MA ← PC: C ← PC+4;

MD ← M[MA] : PC ← C;

I R ← MD; µPC ← PLA;

A ← R [rb];

C ← A + R[rc] ;

00 0 0 0 0 0 1 1

00 0 0 0 0 0 0 0

01 1 0 0 0 0 0 0

00

00

11

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 001 1

5-62 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Getting the PLA Output in Time for
the Microbranch

• For the input to the PLA to be correct for the µbranch in
102, it has to come from MD, not IR

• An alternative is to use see-through latches for IR so the
opcode can pass through IR to PLA before the end of the
clock cycle

5-63 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

See-Through Latch Hardware for IR
So µPC Can Load Immediately

D

Cl

IR〈31 ..27 〉

5
Bus D QQ

µPC〈9..0 〉

PLA
5 10

P R

S

Clock
cycle

Str obe S

Bus Valid data

Valid data
Data at P

Val id
Data at R

PLA outp ut st robed int o µPC

Bus delay

Latch delay

PLA delay

• Data must have
time to get from
MD across Bus,
through IR,
through the PLA,
and satisfy µPC
set up time
before trailing
edge of S

5-64 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 5.21 SRC Microcode Sequencer

2

2 2

10

Sequencer

Exceptionn = 0CON Reset

2

2

2

2

n

n

n

2
Mux control

 BrUn

BrCON

BrN ≠ 0

BrN = 0
End

2
–1

 M
ux

Increment µPC

4–1 Mux

External

address

PLA
Branch

address

000

400

5-65 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Tbl 5.6 Somewhat Vertical
Encoding of the SRC

Microinstruction

Mux
Ct l

Branch
cont rol End

Out
signals

In
signals Misc.

Gat e
regs. ALU

Branch
address

0 0
0 1
1 0
1 1

000 BrUn
001 Br¬CON
010 BrCON
011Br n=0
100 Br n≠0
101 None

0 Cont .
1 End

000 PCout
001 Cout
010 MDout
011 Rout
100 BAout
101 c1out
110 c2out
111 None

000 MAin
001 PCin
010 IRin
011 Ain
100 Rin
101 MDin
110 None

000 Read
001 Wait
010 Ld
011 Decr
100 CONin
101 Cin
110 St op
111 None

00 Gra
01 Grb
10 Grc
11 None

0000 ADD
0001 C=B
0010 SHR
0011 Inc4
 •
 •
 •
1111 NOT

10 bit s

F1 F2 F3 F4 F5 F6 F7 F8 F9

2bit s 3 bit s 1 bit 2 bit s3 bit s 3 bit s3 bit s 4 bit s 10 bit s

5-66 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Other Microprogramming Issues

• Multiway branches: often an instruction can have 4–8
cases, say address modes

• Could take 2–3 successive µbranches, i.e. clock pulses
• The bits selecting the case can be ORed into the branch

address of the µinstruction to get a several way branch
• Say if 2 bits were ORed into the 3rd and 4th bits from the low

end, 4 possible addresses ending in 0000, 0100, 1000, and
1100 would be generated as branch targets

• Advantage is a multiway branch in one clock

• A hardware push-down stack for the µPC can turn
repeated µsequences into µsubroutines

• Vertical µcode can be implemented using a horizontal
µengine, sometimes called nanocode

5-67 Chapter 5—Processor Design—Advanced Topics

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Chapter 5 Summary

• This chapter has dealt with some alternative ways of
designing a computer

• A pipelined design is aimed at making the computer fast—
target of one instruction per clock

• Forwarding, branch delay slot, and load delay slot are steps
in approaching this goal

• More than one issue per clock is possible, but beyond the
scope of this text

• Microprogramming is a design method with a target of
easing the design task and allowing for easy design change
or multiple compatible implementations of the same
instruction set

