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Chapter 5: Processor Desigh—
Advanced Topics

Topics

5.1 Pipelining

* A pipelined design of SRC

* Pipeline hazards
5.2 Instruction-Level Parallelism

e Superscalar processors

* Very Long Instruction Word (VLIW) machines
5.3 Microprogramming

« Control store and microbranching

* Horizontal and vertical microprogramming
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Id r2, addr2

st r4, addrl

add r4, r3, r2

subr2,r5,1

shrr3, r3, 2
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The Pipeline Stages

* 5 pipeline stages are shown

e 1. Fetch instruction

e 2. Fetch operands

3. ALU operation

* 4, Memory access

* 5. Register write
* 5instructions are executing

e shr r3, r3, #2 ;Storing resultintor3
sub r2, r5, #1 ;ldle—no memory access needed
add r4, r3, r2 ;Performing addition in ALU
st r4, addrl ;Accessingr4and addrl
|d r2, addr2 ;Fetching instruction
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Notes on Pipelining Instruction
Processing

* Pipeline stages are shown top to bottom in order
traversed by one instruction

* Instructions listed in order they are fetched
* Order of instructions in pipeline is reverse of listed

« If each stage takes 1 clock:
e every instruction takes 5 clocks to complete
* some instruction completes every clock tick

« Two performance issues: instruction latency and
Instruction bandwidth
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Dependence Among Instructions

 Execution of some instructions can depend on the
completion of others in the pipeline

* One solution is to “stall” the pipeline
« early stages stop while later ones complete processing

 Dependences involving registers can be detected and
data “forwarded” to instruction needing it, without
waiting for register write

 Dependence involving memory is harder and is
sometimes addressed by restricting the way the
Instruction set is used

« “Branch delay slot” is example of such a restriction
 “Load delay” is another example
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Branch and Load Delay Examples

Branch Delay

brz r2, r3 L -
' This instruction always executed
add r6, r7, r8@ «—— Y
st r6, addrl -= Only doneif r2 #0
Load Delay
ld r2, addr This instruction gets “old”

add r5, rl1, r2 «—  valueofr2

shr rl,rl, #4
sub r6, r8, r2 «—_ This instruction gets r2 value
loaded from addr

 Working of instructions is not changed, but way they
work together is
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Characteristics of Pipelined
Processor Design

« Main memory must operate in one cycle
* This can be accomplished by expensive memory, but
e Itis usually done with cache, to be discussed in Chap. 7
* Instruction and data memory must appear separate
e Harvard architecture has separate instruction and data memories
e Again, this is usually done with separate caches
 Few buses are used
* Most connections are point to point
 Some few-way multiplexers are used
 Datais latched (stored in temporary registers) at each
pipeline stage—-called “pipeline registers”
 ALU operations take only 1 clock (esp. shift)
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Adapting Instructions to Pipelined
Execution

e All instructions must fit into a common pipeline stage
structure

« We use a 5-stage pipeline for the SRC
(1) Instruction fetch
(2) Decode and operand access
(3) ALU operations
(4) Data memory access
(5) Register write

« We must fit load/store, ALU, and branch instructions
into this pattern
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Fig 5.2 ALU
Instructions

Instructions fit into 5
stages

Second ALU operand
comes either from a
register or instruction
register c2 field

Opcode must be available
In stage 3 to tell ALU what
to do

Result register, ra, is
written in stage 5

No memory operation
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ALU operations including shifts
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Logic Expressions Defining
Pipeline Stage Activity

branch :=br Obrl :
cond := (IR2(2..0CF 1) {(IR22..1=1)[( IR2DII R[rb]=0)) O
((R22..1E2)[ IR2DI R[rb] 310 :
sh :=shr Oshra Oshl Oshc
alu := add Oaddi Osub Oneg Oand Oandi Uor Oori Onot Ush :
imm := addi Jandi Oori O(sh O(IR2[4..03 0) ):
load :=Id Oldr :
ladr :=la Ular :
store := st [Istr :
|-s :=load Uladr Ostore :
regwrite :=load Oladr Obrl Oalu: Instructions that write to the register file
dsp :=1d Ost Ular : Instructions that use disp addressing
rl :=Idr Ostr Olar : Instructions that use rel addressing
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Notes on the Equations and
Different Stages

 The logic equations are based on the instruction in the
stage where they are used

« When necessary, we append a digit to a logic signal
name to specify it is computed from values in that
stage

e Thus regwrite5 is true when the opcode in stage 5 is
load5 Uladr5 Obrl5 Oalub, all of which are determined
from op5
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Fig 5.4 The
Memory
Access
Instructions:
|d, Idr, st,
and str

« ALU computes
effective addresses

« Stage 4 does read or
write

* Result register
written only on load
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Fig 5.5 The

Branch
Instructions

« The new program
counter value is known
In stage 2—but not in
stage 1

* Only branch and link
does aregister write in
stage 5

« Thereis no ALU or
memory operation
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Fig 5.6 The

SRC Pipeline
Registers and
RTN
Specification

e The pipeline
registers pass
iInformation from
stage to stage

* RTN specifies
output register
values in terms of
Input register
values for stage

* Discuss RTN at

each stage on
blackboard
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Global State of the Pipelined SRC

 PC, the general reqgisters, instruction memory, and data
memory represent the global machine state

« PCis accessed in stage 1 (and stage 2 on branch)
e Instruction memory is accessed in stage 1

* General registers are read in stage 2 and written in
stage 5

« Data memory is only accessed in stage 4

k?omputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan //
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Restrictions on Access to Global
State by Pipeline

« We see why separate instruction and data memories (or
caches) are needed

 When aload or store accesses data memory in stage 4,
stage 1 is accessing an instruction

 Thus two memory accesses occur simultaneously

« Two operands may be needed from registers in stage 2
while another instruction is writing a result register in
stage 5

 Thus as far as the registers are concerned, 2 reads and a
write happen simultaneously

* Increment of PC in stage 1 must be overridden by a
successful branch in stage 2
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Fig 5.7
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Example of Propagation of
Instructions Through Pipe

100: add r4, r6, r8; R4 ~ R 6] + R 8]
104: 1d r7, 128(r5); R71] « MR[5]+128]
108: brl r9, r11, 001; PC - R 11]: R 9] -
112: str rl12, 32 M PC+32] ~ R[12]
512: sub ... next instr.

It is assumed that R[11] contains 512 when the brl

Instruction is executed

R[6] =4 and R[8] =5 are the add operands

R[5] =16 for the |Id and R[12] = 23 for the str

© 1997 V. Heuring and H. Jordan /j
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Fig 5.11
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Functions of the Pipeline
Registers in SRC

(/ 524

* Registers between stages 1 and 2:
* |12 holds full instruction including any register fields and
constant
 PC2 holds the incremented PC from instruction fetch
* Registers between stages 2 and 3:
* I3 holds opcode and ra (needed in stage 5)
X3 holds PC or aregister value (for link or 1st ALU operand)
Y3 holds c1 or c2 or aregister value as 2nd ALU operand
« MD3is used for aregister value to be stored in memory

© 1997 V. Heuring and H. Jordan /j
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Functions of the Pipeline
Registers in SRC (cont’'d)

* Registers between stages 3 and 4.
* |4 has op code and ra
* Z4 has memory address or result register value
¢ MD4 has value to be stored in data memory

* Registers between stages 4 and 5:

* |5 has opcode and destination register number, ra

e Z5 has value to be stored in destination register: from
ALU result, PC link value, or fetched data

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j
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« Stage 1: fetches instruction

stage 2

memory

Functions of the SRC
Pipeline Stages

« PCincremented or replaced by successful branch in

« Stage 2: decodes instruction and gets operands
 Load or store gets operands for address computation
e Store gets register value to be stored as 3rd operand
 ALU operation gets 2 registers or register and constant
« Stage 3: performs ALU operation
» Calculates effective address or does arithmetic/logic
* May pass through link PC or value to be stored in

Chapter 5—Processor Design—Advanced Topics\
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e Load fills Z5 from memory

longer needed)
« Stage 5: writes result register

Functions of the SRC Pipeline
Stages (cont’'d)

e Stage 4. accesses data memory
e Passes Z4 to Z5 unchanged for nonmemory instructions

e Store uses address from Z4 and data from MD4 (no

75 contains value to be written, which can be ALU result,
effective address, PC link value, or fetched data

* rafield always specifies result register in SRC

Chapter 5—Processor Design—Advanced Topics\
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Dependence Between Instructions
in Pipe: Hazards

* Instructions that occupy the pipeline together are being
executed in parallel

 This leads to the problem of instruction dependence,
well known in parallel processing

 The basic problem is that an instruction depends on
the result of a previously issued instruction that is not
yet complete
« Two categories of hazards
« Data hazards: incorrect use of old and new data

* Branch hazards: fetch of wrong instruction on a change
in PC

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j
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Classification of Data Hazards

* A read after write hazard (RAW) arises from a flow
dependence, where an instruction uses data produced
by a previous one

* A write after read hazard (WAR) comes from an anti-
dependence, where an instruction writes a new value
over one that is still needed by a previous instruction

* A write after write hazard (WAW) comes from an output
dependence, where two parallel instructions write the
same register and must do it in the order in which they
were issued

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j
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Data Hazards in SRC

Since all data memory access occurs in stage 4, memory
writes and reads are sequential and give rise to no
hazards

Since all registers are written in the last stage, WAW and
WAR hazards do not occur

 Two writes always occur in the order issued, and a write
always follows a previously issued read

SRC hazards on register data are limited to RAW hazards
coming from flow dependence

Values are written into registers at the end of stage 5 but
may be needed by a following instruction at the
beginning of stage 2

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j
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 Detection:

* This is usually too restrictive

 Correction:

stalling only when unavoidable

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan

Possible Solutions to the Register
Data Hazard Problem

« The machine manual could list rules specifying that a
dependent instruction cannot be issued less than a given
number of steps after the one on which it depends

« Since the operation and operands are known at each stage,
dependence on a following stage can be detected

 The dependent instruction can be “stalled” and those ahead
of it in the pipeline allowed to complete

* Result can be “forwarded” to a following inst. in a previous
stage without waiting to be written into its register

* Preferred SRC design will use detection, forwarding and

Chapter 5—Processor Design—Advanced Topics\
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Detecting Hazards and
Dependence Distance

« To detect hazards, pairs of instructions must be
considered

« Datais normally available after being written to register

« Can be made available for forwarding as early as the stage
where it is produced

« Stage 3 output for ALU results, stage 4 for memory fetch
 Operands normally needed in stage 2

 Can be received from forwarding as late as the stage in
which they are used

« Stage 3 for ALU operands and address modifiers, stage 4 for
stored register, stage 2 for branch target
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Instruction Pair Hazard Interaction

Write to Reg. File

@I\br mal | y/ Earl i est av@

Read from

Reg. File Cl ass alu | oad | adr br |
' dass NLNNE 6/4 ,
Val u al u 2/ 3 4/ 2

ormal |y | oad 2/3 4/ 1 4/ 2 4/ 1 4/ 1

L at est 2/ 3 4/ 1 4/ 2 4/ 1 4/ 1
CIED 4/ 1 4/ 2 4/ 1 4/1
branch 2/ 2 4/ 2 4/ 3 412 411D

| nstructi on se lon to elimnate
hazar d,CNor nal / For war ded

« Latest needed stage 3 for store is based on address
modifier register. The stored value is not needed until
stage 4

 Store also needs an operand from ra. See Text Thl 5.1
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Delays Unavoidable by Forwarding

 |nthe Table 5.1 “Load” column, we see the value
loaded cannot be available to the next instruction, even
with forwarding

e Can restrict compiler not to put a dependent instruction
in the next position after a load (next 2 positions if the
dependent instruction is a branch)

« Target register cannot be forwarded to branch from the
Immediately preceding instruction

 Code is restricted so that branch target must not be
changed by instruction preceding branch (previous 2
instructions if loaded from memory)

* Do not confuse this with the branch delay slot, which is a
dependence of instruction fetch on branch, not a
dependence of branch on something else
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Stalling the Pipeline on
Hazard Detection

 Assuming hazard detection, the pipeline can be stalled
by inhibiting earlier stage operation and allowing later
stages to proceed

* A simple way to inhibit a stage is a pause signal that
turns off the clock to that stage so none of its output
registers are changed

- If stages 1 and 2, say, are paused, then something
must be delivered to stage 3 so the rest of the pipeline
can be cleared

* Insertion of nop into the pipeline is an obvious choice
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Example of Detecting ALU Hazards
and Stalling Pipeline

 The following expression detects hazards between
ALU instructions in stages 2 and 3 and stalls the
pipeline

(alu3 Oalu2 O((ra3=rb2)0d(ra3 =rc2) & imm2)) -
( pause2: pausel: op3 ~ 0):

« After such a stall, the hazard will be between stages 2
and 4, detected by

(alu4 Jalu2 O((ra4 =rb2) O(rad4 =rc2) 4 imm2)) -
( pause2: pausel: op3 ~ 0):

 Hazards between stages 2 & 5 require

(alub Oalu2 O((ra5=rb2)0(ra5=rc2) & Imm2)) -
( pause2: pausel: op3 ~ 0):

To stage 1

pausel ——qg

Fig 5.13 Pipeline

Clocking Signals pause2 — )
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Fig 5.14 Stall Due to a Data
Dependence Between Two ALU
Instructions
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Data Forwarding:
from ALU Instruction to ALU
Instruction

 The pair table for data dependencies says that if

forwarding is done, dependent ALU instructions can be
adjacent, not 4 apart

* For this to work, dependences must be detected and

data sent from where it is available directly to X or Y
iInput of ALU

 For adependence of an ALU instruction in stage 3 on
an ALU instruction in stage 5 the equation is

alub Jalu3 - ((ra5=rb3) - X ~Z5:
(ra5=rc3) &3 imMm3 - Y ~Z5):
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Data Forwarding:
ALU to ALU Instruction (cont’'d)

For an ALU instruction in stage 3 depending on one in
stage 4, the equation is

alu4 Halu3 - ((ra4 =rb3) - X ~Z4:
(rad=rc3) [h immM3 - Y ~ Z4):

« We can see that the rb and rc fields must be available
In stage 3 for hazard detection

 Multiplexers must be put on the X and Y inputs to the
ALU so that Z4 or Z5 can replace either X3 or Y3 as
Inputs
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Restrictions Left If Forwarding
Done Wherever Possible

—

(1) Branch delay slot br r4
add . ..

 The instruction after a branch is always executed, ...
whether the branch succeeds or not.
Id r4, 4(r5)

(2) Load delay slot nop

* Aregister loaded from memory cannot be used  negr6,r4
as an operand in the next instruction. 4 10, 1000

 Aregister loaded from memory cannot be used nop
as a branch target for the next two instructions. nop

br r0
(3) Branch target !

 Result register of ALU or ladr instruction cannot notro.rl

. . nop
be used as branch target by the next instruction. |, "o
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Questions for Discussion

« How and when would you debug this design?

¢ How does RTN and similar Hardware Description
Languages fit into testing and debugging?

 What tools would you use, and which stage?
 What kind of software test routines would you use?

« How would you correct errors at each stage in the
design?
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Instruction-Level Parallelism

A pipeline that is full of useful instructions completes at
most one every clock cycle

 Sometimes called the Flynn limit

« If there are multiple function units and multiple
Instructions have been fetched, then it is possible to
start several at once

« Two approaches are: superscalar

 Dynamically issue as many prefetched instructions to idle
function units as possible

« and Very Long Instruction Word (VLIW)

« Statically compile long instruction words with many
operations in aword, each for a different function unit
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Character of the Function Units in
Multiple Issue Machines

There may be different types of function units
* Floating-point
* Integer
* Branch

There can be more than one of the same type
Each function unit is itself pipelined
Branches become more of a problem

 There are fewer clock cycles between branches

* Branch units try to predict branch direction

* Instructions at branch target may be prefetched, and even
executed speculatively, in hopes the branch goes that way
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Microprogramming: Basic ldea

 Recall control sequence for 1-bus SRC

Step Concrete RTN Control Sequence
T0 MA - PC: C -« PC+4; PCyu, MAin, INC4, C;,, Read

T1T MD - M[MA]: PC - C; C,, PC;,, Wait

T2 IR <« MD; MDout, IRin

T3 A < R[rb]; Grb, Rout, Ay,

T4 C ~ A+Rjrc]; Grec, R, ADD, C,
5  R[ra] <« C; C.ut Gra, Rin, End

« Control unit job is to generate the sequence of control
signals

« How about building a computer to do this?
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The Microcode Engine

A computer to generate control signals is much
simpler than an ordinary computer

* At the simplest, it just reads the control signals in
order from a read-only memory

« The memory is called the control store

* A control store word, or microinstruction, contains a
bit pattern telling which control signals are true in a
specific step

« The major issue is determining the order in which
microinstructions are read
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Fig 5.16 Block Diagram of
Microcoded Control Unit
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Parts of the Microprogrammed
Control Unit

e Since the control signals are just read from memory,
the main function is sequencing

* This is reflected in the several ways the uPC can be
loaded

e Output of incrementer—uPC + 1

 PLA output—start address for a macroinstruction
 Branch address from pinstruction

« External source—say for exception or reset

* Micro conditional branches can depend on condition
codes, data path state, external signals, etc.
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Contents of a Microinstruction
Microinstruction format
Branch control Control signals Branch address
T T eee |
o< O 3 = e
A = o O < LL

 Main component is list of 1/0 control signal values

e Thereis a branch address in the control store

e There are branch control bits to determine when to use the
branch address and when to use pyPC + 1

© 1997 V. Heuring and H. Jordan /j
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0 pnCode for instruction fetch
e Common
Instruction
al pnCode for add fetch
Microaddress sequence
, * Separate
a uCode for br sequences for
each (macro)
Instruction
a3
pnCode for shr . Wide words
2n-1
- m bits wide >
< kpbranch_ o ¢ control . < Nbranch__,
control bits signals addr. bits
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Tbl 5.2 Control Signals for the
add Instruction

—

8 'C_E -l—" E +

O 25|13 o g =g |5 c T BRIl slal olo
RS EES SRR EE N EEE
101 |+ |1|{0Of0OfO|2]1]0|0OfO|O|2]12]0]0|0OfO|O]|O
102 |+« |O|1[0Ofl0O|O|O]1|0OfO|O|O|O|1]0|0Of0O|O]|O
103 |+« |O|Of21|0O|0O|O|]O|1[O|0O|O|O|O|O|OfO|O]O
200 [+ |O]O|Of2|(0O|O|O]JO]1|O0OfO|O|O|O|O]1|0OfO
201 [+ |O]O|Of2(0O|2|0O]O]|OfOfO|O|JO|1]0]O0Of1|O
202 [+ |O]1|0f[0OfO|O|O]O]Of1|[O|0O|O|O]1]0|0Of1
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« Addresses 101-103 are the instruction fetch
« Addresses 200-202 do the add

 Change of pcontrol from 103 to 200 uses a kind of
ubranch
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ANDed with control signals

field in every pinstruction

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan

Uses for gbranching in the
Microprogrammed Control Unit

(1) Branch to start of pcode for a specific inst.
(2) Conditional control signals, e.g. CON - PC_,
(3) Looping on conditions, e.g.n #0 - ... Goto6

* Conditions will control pubranches instead of being

 Microbranches are frequent and control store addresses
are short, so it is reasonable to have a pbranch address

Chapter 5—Processor Design—Advanced Topics\
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lllustration of goranching
Control Logic

 We illustrate a pbranching control scheme by a machine
having condition code bits N and Z

 Branch control has 2 parts:

(1) selecting the input applied to the uPC and
(2) specifying whether this input or yPC + 1 is used
 We allow 4 possible inputs to uPC
 The incremented value uyPC + 1

* The PLA lookup table for the start of a macroinstruction
* An externally supplied address

 The branch address field in the pinstruction word
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Fig 5.18 Branching Controls in the
Microcoded Control Unit

|
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2 I ¢
| e NotZ
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_ 4| r==___ | ¢ address e Z
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Control
store e To 1 of 4 places
v « Next
0(0(0|0|0|0|0| Control signals 244, uinstruction
iMuxcontrob—Lr‘ ¢¢¢¢ ¢ e PLA
BrUn
BrNotZ Mux Ctl Select ° External
Brz 00 Increment pPc
BrNotN 01  PLA address
BrN 10 External address
11 Branch address « Branch address
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Some Possible ybranches Using
the lllustrated Logic (Refer to Tbl 5.3)

—

ST NI

< 5 2 - ZO _ Cpntrol Branch | |

s 5151515 (5] S9nals |Address Branching action
0|0]O0]J0O]0O]O0 XX XXX None—next instruction
ol |1(ofo]ofo] e-- XXX |Branch to output of PLA
10 {0011 ]0{O0O oo XXX Br if Zto Extern. Addr.
11 ]10]0]0]0 |1 300 Br if Nto 300 (else next)
11 |o]ofo[z|ofo0---0 | 206 [Brif Nto 206 (else next)
11 |1{0|0|0|O 204 Br to 204

« If the control signals are all zero, the pinstruction only does
a test

* Otherwise test is combined with data path activity
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Horizontal versus Vertical
Microcode Schemes

* In horizontal microcode, each control signal is
represented by a bit in the pinstruction

* In vertical microcode, a set of true control signals is
represented by a shorter code

« The name horizontal implies fewer control store words
of more bits per word

* Vertical pcode only allows RTs in a step for which
there is a vertical pinstruction code

 Thus vertical pcode may take more control store words
of fewer bits
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Fig 5.19 A Somewhat Vertical

Encoding
ALU Register-out
ops field field

LR F5 | eee | F8

« Scheme would save (16 +7) - (4 + 3) = 16 bits/word in the
case illustrated
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4-16 decoder| | 3-8 decoder

I

16 ALU 7 Reg,
control control
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Fig 5.20 Completely Horizontal and
Vertical Microcoding
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Saving Control Store Bits with
Horizontal Microcode

« Some control signals cannot possibly be true at the same
time
 One and only one ALU function can be selected
* Only one register out gate can be true with a single bus
« Memory read and write cannot be true at the same step
* A set of m such signals can be encoded using log,m bits
(log,(m + 1) to allow for no signal true)
« The raw control signals can then be generated by a k to 2k
decoder, where 2k>m (or 2<=m + 1)

 Thisis acompromise between horizontal and vertical
encoding
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A Microprogrammed Control Unit
for the 1-Bus SRC

* Using the 1-bus SRC data path design gives a specific set
of control signals

« There are no condition codes, but data path signals CON
and n = 0 will need to be tested

 We will use pbranches BrCON, Brn =0, and Brn #0
 We adopt the clocking logic of Fig. 4.14

* Logic for exception and reset signals is added to the
microcode sequencer logic

« Exception and reset are assumed to have been
synchronized to the clock
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Tbl 5.4 The add Instruction
5 |l ol o o| [Other
Br
Addr.| x | S 8 gl Ll o| -=(Control Actions
3 rul rul | cl O < ; Addr
= |o|m|m|o|w| a| =|Sighals
100 |o0| 0l 0O0|0O|O0O]|]O| 1|1 XXX | MA <« PC: C « PC+4;
101 (00| 0[{0| 0| 0| 0] 0| O] =+ |XX| MD - MMA]: PC < C
102 (01|10 0|0[0|0] 0] =+ |XX|IR< MD; uPC — PLA;
200 (00| 0| O[O O|O| 0| O] == |XX]|AR[b];
201 (00| 0| 0[O0 0| 0] 0O|0O| =+ |XX]| C<A-+R[rc];
202 |11 | 1|0l 0| 0| 1[0]| 0| =+ |100]| R[ra] « C: uPC — 100;
* Microbranching to the output of the PLA is shown at 102
« Microbranch to 100 at 202 starts next fetch
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Getting the PLA Output in Time for
the Microbranch

e For the input to the PLA to be correct for the pbranch in
102, it has to come from MD, not IR

« An alternative is to use see-through latches for IR so the
opcode can pass through IR to PLA before the end of the

clock cycle
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See-Through Latch Hardware for IR
So pPC Can Load Immediately
IRB1..270 5 UPC..00
Bus —~—{D Q|—# PLA 41D Q
5 5 10  Data must have
time to get from
S Cl —D MD across Bus,
through IR,
through the PLA,
and satisfy uPC
Clock set up time
cycle - > before trailing
Strobe S | edge of S
BUS <20 TTVAld data
Sata at P Ly Valid_data B
Data at R valid__
/
Latch delay
PLA delay 7
PLA output strobed into pPC
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L

CON n=0 Exception Reset |

Fig 5.21 SRC Microcode Sequencer
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Thl 5.6 Somewhat Vertical
Encoding of the SRC

—

F1 F2 F3 F4 F5 F6 F7 F8 F9
Mux | Branch End Out In Misc Gate ALU Branch
ICtl | control signals [signals ' regs. address
00 [000 BrUn [0Cont.[000 PCyyt [000 MAi, 000 Read [00 Gra (0000 ADD _
01 [001 Br-CONLEnd f001C,, [001 RCj, 001 Wait 01 Grb [0001 C=B |10 bits
10 | 010 BrCON 010 MD.. . 010 IR. [010Ld ]10 Grc [0010 SHR
out Rin
11 |011Br n=0 5 5 " [011 Decr |11 None 0011 Inc4
100 Br nz0 11 Rout 011 Ain hoo con, .
101 None 100 BAout (100 Rn  ho1 ¢, .
101 cloyt [101 MDip g1 stop .
110 c25yt 110 None |111 None 1111 NOT
111 None
2bits| 3 bits 1 bit 3 bits 3 bits 3 bits 2 bits 4 bits 10 bits
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Other Microprogramming Issues

e Multiway branches: often an instruction can have 4-8
cases, say address modes

* Could take 2—-3 successive pbranches, i.e. clock pulses

* The bits selecting the case can be ORed into the branch
address of the pinstruction to get a several way branch

« Say if 2 bits were ORed into the 3rd and 4th bits from the low
end, 4 possible addresses ending in 0000, 0100, 1000, and
1100 would be generated as branch targets

* Advantage is a multiway branch in one clock

A hardware push-down stack for the uPC can turn
repeated psequences into psubroutines

* Vertical pcode can be implemented using a horizontal
uengine, sometimes called nanocode
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Chapter 5 Summary

* This chapter has dealt with some alternative ways of
designing a computer

* A pipelined design is aimed at making the computer fast—
target of one instruction per clock

 Forwarding, branch delay slot, and load delay slot are steps
In approaching this goal

 More than oneissue per clock is possible, but beyond the
scope of this text

 Microprogramming is a design method with a target of
easing the design task and allowing for easy design change
or multiple compatible implementations of the same
Instruction set
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