/[5-1 Chapter 5—Processor Design—Advanced Topics\

Chapter 5: Processor Desigh—
Advanced Topics

Topics

5.1 Pipelining

* A pipelined design of SRC

* Pipeline hazards
5.2 Instruction-Level Parallelism

e Superscalar processors

* Very Long Instruction Word (VLIW) machines
5.3 Microprogramming

« Control store and microbranching

* Horizontal and vertical microprogramming

k?omputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan //

f/ 5-2

Instruction
interpretation Part
and execution manufacture
Fetch Select
instruction part
Y Y
Fetch Drill
operands part
Y Y
ALU Cut
operation part
Y Y
Memory Polish
access part
Y Y
Register Package
write part
add r4, r3, r2 Make end plate

(a) Without pipelining/assembly line

Id r2, addr2

st r4, addrl

add r4, r3, r2

subr2,r5,1

shrr3, r3, 2

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan

Chapter 5—Processor Design—Advanced Topics\

Instruction
interpretation
and execution

Fetch
instruction

Y

Fetch
operands

Y

ALU
operation

Y

Memory
access

Y

Register
write

(b) With pipelining/assembly line

Fig 5.1 Executing Machine Instructions
versus Manufacturing Small Parts

Cover
plate

End
plate

Top
plate

Bottom
plate

Center
plate

Part
manufacture

Select
part

Drill
part

Cut
part

Polish
part

A4

Package
part

© 1997 V. Heuring and H. Jordan /j

KKS-B Chapter 5—Processor Design—Advanced Topics\

The Pipeline Stages

* 5 pipeline stages are shown

e 1. Fetch instruction

e 2. Fetch operands

3. ALU operation

* 4, Memory access

* 5. Register write
* 5instructions are executing

e shr r3, r3, #2 ;Storing resultintor3
sub r2, r5, #1 ;ldle—no memory access needed
add r4, r3, r2 ;Performing addition in ALU
st r4, addrl ;Accessingr4and addrl
|d r2, addr2 ;Fetching instruction

k?omputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan jj

/[5-4 Chapter 5—Processor Design—Advanced Topics\

Notes on Pipelining Instruction
Processing

* Pipeline stages are shown top to bottom in order
traversed by one instruction

* Instructions listed in order they are fetched
* Order of instructions in pipeline is reverse of listed

« If each stage takes 1 clock:
e every instruction takes 5 clocks to complete
* some instruction completes every clock tick

« Two performance issues: instruction latency and
Instruction bandwidth

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[5-5 Chapter 5—Processor Design—Advanced Topics\

Dependence Among Instructions

 Execution of some instructions can depend on the
completion of others in the pipeline

* One solution is to “stall” the pipeline
« early stages stop while later ones complete processing

 Dependences involving registers can be detected and
data “forwarded” to instruction needing it, without
waiting for register write

 Dependence involving memory is harder and is
sometimes addressed by restricting the way the
Instruction set is used

« “Branch delay slot” is example of such a restriction
 “Load delay” is another example

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

(/ 56

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

Chapter 5—Processor Design—Advanced Topics\

Branch and Load Delay Examples

Branch Delay

brz r2, r3 L -
' This instruction always executed
add r6, r7, r8@ «—— Y
st r6, addrl -= Only doneif r2 #0
Load Delay
ld r2, addr This instruction gets “old”

add r5, rl1, r2 «— valueofr2

shr rl,rl, #4
sub r6, r8, r2 «—_ This instruction gets r2 value
loaded from addr

 Working of instructions is not changed, but way they
work together is

/[5-7 Chapter 5—Processor Design—Advanced Topics\

Characteristics of Pipelined
Processor Design

« Main memory must operate in one cycle
* This can be accomplished by expensive memory, but
e Itis usually done with cache, to be discussed in Chap. 7
* Instruction and data memory must appear separate
e Harvard architecture has separate instruction and data memories
e Again, this is usually done with separate caches
 Few buses are used
* Most connections are point to point
 Some few-way multiplexers are used
 Datais latched (stored in temporary registers) at each
pipeline stage—-called “pipeline registers”
 ALU operations take only 1 clock (esp. shift)

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[5-8 Chapter 5—Processor Design—Advanced Topics\

Adapting Instructions to Pipelined
Execution

e All instructions must fit into a common pipeline stage
structure

« We use a 5-stage pipeline for the SRC
(1) Instruction fetch
(2) Decode and operand access
(3) ALU operations
(4) Data memory access
(5) Register write

« We must fit load/store, ALU, and branch instructions
into this pattern

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

f/ 5-9

Fig 5.2 ALU
Instructions

Instructions fit into 5
stages

Second ALU operand
comes either from a
register or instruction
register c2 field

Opcode must be available
In stage 3 to tell ALU what
to do

Result register, ra, is
written in stage 5

No memory operation

k?omputer Systems Design and Architecture by V. Heuring and H. Jordan

Chapter 5—Processor Design—Advanced Topics\

ALU operations including shifts

Instruction
_____ memory ¢ (PC }« - T T
1. \ 4
Instruction Inc4
fetch
Y - - .
Register file [« regwrite
— — —|R2|op,ra| C24.00 | — — R[rb] RIrc] Rlrall<_ ra
2. A
Decode
and
operand
read Mp4—>]
Y
————— ————|X3|:—— Y3|———1+ —
3.
ALU
operation Y VY
—>|Decode|—>| ALU |
Y
____________ z@ [S
4,
Memory
access
5.
ra
write

© 1997 V. Heuring and H. Jordan jj

Logic Expressions Defining
Pipeline Stage Activity

branch :=br Obrl :
cond := (IR2(2..0CF 1) {(IR22..1=1)[(IR2DII R[rb]=0)) O
((R22..1E2)[IR2DI R[rb] 310 :
sh :=shr Oshra Oshl Oshc
alu := add Oaddi Osub Oneg Oand Oandi Uor Oori Onot Ush :
imm := addi Jandi Oori O(sh O(IR2[4..03 0)):
load :=Id Oldr :
ladr :=la Ular :
store := st [Istr :
|-s :=load Uladr Ostore :
regwrite :=load Oladr Obrl Oalu: Instructions that write to the register file
dsp :=1d Ost Ular : Instructions that use disp addressing
rl :=Idr Ostr Olar : Instructions that use rel addressing

/[5-10 Chapter 5—Processor Design—Advanced Topics\

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[5-11 Chapter 5—Processor Design—Advanced Topics\

Notes on the Equations and
Different Stages

 The logic equations are based on the instruction in the
stage where they are used

« When necessary, we append a digit to a logic signal
name to specify it is computed from values in that
stage

e Thus regwrite5 is true when the opcode in stage 5 is
load5 Uladr5 Obrl5 Oalub, all of which are determined
from op5

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

(/o2
Fig 5.4 The
Memory
Access
Instructions:
|d, Idr, st,
and str

« ALU computes
effective addresses

« Stage 4 does read or
write

* Result register
written only on load

Chapter 5—Processor Design—Advanced Topics\

Id, Idr, la, and lar

Instruction
memory € (PC]«

1

Instruction

fetch

2.
Decode
and
operand
read

v A - - regwrite
y Register file (€—
— — —IR2 |0p, ra| c121..00 HPC2 R[rb] R[rc] R[ra]:
ra
cl| c2 A
YY Vv
Mp3>| <
\ Mp4
-F---- x3]- - [¥3]- -+ —|- - -

Memory
access

________ |Z4 —
Data |
memory
Y
Mp5 >
_______ 75 L — —

k?omputer Systems Design and Architecture by V. Heuring and H. Jordan

st and str

Instruction
memory

Y

— — -IR2[op,ra] c121..00

y Register file |€«—

cl

HE,3£FR[rb] R[rc] R[ra]~ —
c2

© 1997 V. Heuring and H. Jordan jj

regwrite

(/ 513
Fig 5.5 The

Branch
Instructions

« The new program
counter value is known
In stage 2—but not in
stage 1

* Only branch and link
does aregister write in
stage 5

« Thereis no ALU or
memory operation

k?omputer Systems Design and Architecture by V. Heuring and H. Jordan

Chapter 5—Processor Design—Advanced Topics\

Branch br and brl

Instruction
memory

1.
Instruction
fetch

\ 4

PC —

Register file

Y
- - — IR2|0p, ra| c2(2..00 HPCZ"R[rb] R[rc] R[ra]

2.
Decode
and
operand
read

T —

brl only

© 1997 V. Heuring and H. Jordan jj

f/5-14.
Fig 5.6 The

SRC Pipeline
Registers and
RTN
Specification

e The pipeline
registers pass
iInformation from
stage to stage

* RTN specifies
output register
values in terms of
Input register
values for stage

* Discuss RTN at

each stage on
blackboard

k?omputer Systems Design and Architecture by V.

Instruction
______ memory (_W‘<___________________

Chapter 5—Processor Design—Advanced Topics\

A
v y [PC+4
1. |IR2 - MIPC]:
Instruction| peo . pe 44
fetch
R[rb]
)/)/ Register file ra (<
-IR2- oprarbrcclc2 | —| Pc2 } —{rb R[b] rc RIrc] R[ra] - —
A v A ¥
X3 « I-s2 - (rel2 - PC2: disp2 - R[rb]) :
2. brl2 - PC2:alu2 - R[rb]:
Decode | Y3 — I-s2 - (rel2 — c1:disp2 — c2):
and branch2 - :alu2 - (imm2 - c2:-imm2- RJrc]) :
operand | MD3 - store2 - R[ra] : IR3« IR2:stop2 - Run « O:
read PC — =branch2 - PC + 4 : branch2 - (cond(IR2, R[rc]) - R[rb] ;
=cond(IR2, R[rc]) - PC + 4);
¥ \
-—— R3 }————~— 1 x3 |- vy38 |——-[mMD3 }————1 -
1] Y
Z4 — (I-s3 - X3 +Y3:
3. bri3 - X3:
ALU alu3 - X3 op Y3):
operation MD4 — MD3:
IR4 ~ IR3;

Memory
access

Z5 ~ (load4 - M[Zz4]:

ladr4 Obranch4 Oalud - Z4) :
store4 - (M[Z4] — MD4):
IR5 « IR4;

> Data
< memory

5.
Register
write

Heuring and H. Jordan

© 1997 V. Heuring and H. Jordan jj

/[5-15 Chapter 5—Processor Design—Advanced Topics\

Global State of the Pipelined SRC

 PC, the general reqgisters, instruction memory, and data
memory represent the global machine state

« PCis accessed in stage 1 (and stage 2 on branch)
e Instruction memory is accessed in stage 1

* General registers are read in stage 2 and written in
stage 5

« Data memory is only accessed in stage 4

k?omputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan //

/[5-16 Chapter 5—Processor Design—Advanced Topics\

Restrictions on Access to Global
State by Pipeline

« We see why separate instruction and data memories (or
caches) are needed

 When aload or store accesses data memory in stage 4,
stage 1 is accessing an instruction

 Thus two memory accesses occur simultaneously

« Two operands may be needed from registers in stage 2
while another instruction is writing a result register in
stage 5

 Thus as far as the registers are concerned, 2 reads and a
write happen simultaneously

* Increment of PC in stage 1 must be overridden by a
successful branch in stage 2

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[5-17
Fig 5.7

The

Pipeline
Data

Path with

Selected

Control

Signals

e Most
control
signals
shown
and
given
values

* Multi-
plexer
control is
stressed
In this
figure

1.
Instruction
fetch

and
operand
read

Register
write

Instruction
memory

Mpl (=(branch2 cond) - Inc4):
Inc4 ((branch2gcond) - PC2):
Gl
IR2 vy Y Register file <«— GAL
loprarbrecl c2} {PC2] ——|al Rl a2 R2 a3 R3[E —C% -
| ro—J <> J_ e) w3
Mp2 cond Mp2 ~ (-store - rc):
rc A T (store - ra):
Mp3 ~ (rl Obranch - PC2):
2 2[2..004—>
Y V clcj ¢ * = > BII;)agnigh (dsp Dalu - R1):
Mp4 ~ (rl - cl):
Y Mp3_> Q <I\‘ <_Mp4v (dsp Oimm - c2):
IR3 ____| X3 |_| Y3 |__| MD3 |___ — _ (aud7imm =imm - R2):
op ra ALU
op’n
»Decode — ALU
R4 |— — — — — — — z4 }———{MD4 |- — —H+—-
addr | Data
op ra >l memory
Mp5 ~ (-load - Z4):
»|Decode load/store ’_ﬂ_g]e (load - mem data):
| Y Vv
> <\4 Mp5
vy
——————— ———————— L
ra

Computer Systems Design and Architecture by V. Heuring and H. Jordan

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan

/[5-18 Chapter 5—Processor Design—Advanced Topics\
Example of Propagation of
Instructions Through Pipe

100: add r4, r6, r8; R4 ~ R 6] + R 8]
104: 1d r7, 128(r5); R71] « MR[5]+128]
108: brl r9, r11, 001; PC - R 11]: R 9] -
112: str rl12, 32 M PC+32] ~ R[12]
512: sub ... next instr.

It is assumed that R[11] contains 512 when the brl

Instruction is executed

R[6] =4 and R[8] =5 are the add operands

R[5] =16 for the |Id and R[12] = 23 for the str

© 1997 V. Heuring and H. Jordan /j

PQ

f/ 519

Fig 5.8
First Clock
Cycle: add

Enters

Stage 1 of
Pipeline

 Program
counter is
Incremented to
104

512: sub

112: str rl12, #32

108: brl r9,rl11, 001

104: Id r7,r5, #128

100: add r4,r6, r8

_______ Instruction<_pc 104—— — — — — — — — — _ _ _
memory _|
. Mp x/
Instruction Inc4
fetch
100: add r4, 6, 18 104 -
IR2 * Register file <«— GAl
————— loprarbrecl c2} {PC2} —|—|al R1 a2 R2 a3 R3[E =2 -
| — ‘\|> J_ T ! w3
2. MpP2 cond
Decode . A f A
and c2 c22.0c4—{Branch
d o ¢ - >|Branc
operan VY Yy Y ogic
vy Mp3 > <™ KN [«Mp4
| |
————— R -————-[X3 |{ Y3 |—{MD3 |} —— |+ ——
op ra ALU
3 del "y ALU
: Decode
ALU "
operation
A
————— R4 |———————{ 74 | ———{MD4 }F — — H+——
addr | Data
4. op ra > mer?ory
Memory ’_ﬂ_:ﬂe
Access 5| Decode load/store
| Y V
> < [Mps5
\ 4
————— s R N B
S, op ° ' value
ra Ly Decode|—load Olader Obrl Oalu

Chapter 5—Pro

cessor Design—Advanced Topics\

f[520

Chapter 5—Processor Design—Advanced Topics\

FI g 5 . 9 _______ |nrﬁg;1n%tir(;/n<_p(:108_1; :_ —M;1 ————————
SeCOnd CIOCk Instrﬁction Inc4 _; T

fetch
CyCIG: add 104: Id 17,15, | 128 138 -
\ PC2 Register fil GAl
Enters Stage — -~ ladd 68 | [104] |- r: 46%;erjl_ea3 R3-<_|:—:_—$V2?—
= - rb t L
2, Whlle 1d IS Degé)de Ai/f Mp2 COAHd
I and 4—co——c22.04—[Branch
Belng Fetched operand s FBranc
at Stage 1 add r4 Mp3—>/l7§ /|7(<_|\/||o4v
————— ODIZ#——A—LU—I X3] ¥8 J-{MD3} —— |-~
- add operands 3. »Decode| > »| ALU
. ALU
are fetched in operation
stage 2
————— R4 |—— ————— z4 | ——— I\/IVD4 SR
512: sub ...) Ll O memary
' v
...... Memory
112: str r12, #32 access > Decode 'Oad/smrev ; Bt
108: brl r9,rl11, 001 | > < |Mp5
104 Id r7, r5, #128 _____ RS |—m - — —— — 4| 725 L — — — — _ _ _ _ O
100 add r4, I‘6, I’8 r5a op © ' value
fite L »Decode|-load Olader Obrl Dalu

vomputer Systems Design and Architecture by V- I-Y\\éurmg-and- Hdodamr — — — — — — — — — — — — ©-1997-V. Heuringand H-Jordan —/j

f[521

Chapter 5—Processor Design—Advanced Topics\

T U Instruction|«pc 11— — — — — —
Fig 5.10 .
/' J«—wp1
1 1.
Th I rd CI O C k Instruction Inc4 4%
fetch
Cycle: br | 108: brl r9,r11, 001 112 o1
E t th IR2 | | PC2 al Rl a2 R2 a3 R3 4—891
n erS e ————— d r7,r5, 128 1081 —|—|r5 16 | -4———W; —
. . 5 rbﬁ \4/ JVpZLL
Pipeline Decode ety § RS
and 6 o c2 1r2a8 c2[2..0Lr—Branch
operaand VvV Vvvyy logic
e add ea d 17 Mp3 >] [P = Mp4
IR3 '
performsits - ragdm]~ — -xa[4 Jva3[5 }—{wb3 - — — H-— -
arithmetic in TT add Y !
Stage 3 A?_IU » Decode —>» ALU
operation |
add r4 9
Y
512: sub ... R4 |— — — — — — — !_zt_}——— MDA - — — {4 — —
addr Data
...... Lol > memory
112: str rl12, #32 4. i !
’ Memory load/st I—ﬁ I—;g |
108: brl r9,r11, 001 access »| Decode [225N A
104: Id 7,5, #128 | > |Mps
. Y
100: add r4,r6,r8 - . M I
X ° | value
ra 2 »IDecode|load Diader Dbrl Talu |
vomputer Systems Design and Architecture by - I\-/}g&%g—and- HJdetdainr — — — — — — — — — — — — ©-1997-V. Heuring-and H-Joerdan —/j

f/ 5-22

Fig 5.11
Fourth Clock
Cycle: str
Enters the
Pipeline

 addisidlein

stage 4

e Success of br
changes program
counter to 512

512:
r12, #32
ro, r11, 001
r7,r5, #128
r4, ro6, r8

112:
108:
104
100:

_______ Instruction\gpc{ 112 519— — — — — — o _
memory 112 _|
1. A
Instruction Inc4 _>T 512
fetch
112:str r12, | 32 116 4 o1
IR2 Y ¥YPC2| |al Rl a2 R2 a3 R3|e«—oAl
————— lod r9,ri1 001} {112} —|—|r11 512 < -c2 -
5 agp rarh re ¢l R er \54_{ LWS
: Mp2
Decode TC A P2 cond
and ra
c2[2..0(=001—Branch
operand 112 :
IC;ead v vy ¢ Y logic
brl r9 Mp3 > /<I\« f<:|\ <—Mp4v
B g7 — — —x3[16 Jva[28} — {WD3 - — — - —
dp rp
: Decode| > ALU
' ecode
ALU >
operation |
Id r7 144
Y
B T 7 e —— z4af 9 }———{MD4 } — —H+—
adar | Data
4 dp rh = meryory
Memory ’_ﬂ_:g]e
ccess 5| Decode Ioad/storei !
add r4 > Mp5
- e T I SR
5. op ° | value
ra L Decode |- load Olader Obrl Oalu

Chapter 5—Processor Design—Advanced Topics

k?omputer Systems Design and Architecture by V- I-\M]L%g—and—HﬁJordan—

f[5-23 Chapter 5—Processor Design—Advanced Topics\

FI g 5 . 12 _______ Instruction'€pC 516—— — - — — — — — — — — —
. memory _I
Fifth Clock . I N e
. Instruction Inc4
Cycle: add fetch ET
C I t 512: sub, ... 516 <Ol
ompletes, e e [R 0 PR
b re
sub Enters the . [{¢ o] Aﬁmﬁgﬁ?—g—
. . ecode \ o A
and s 2% 50 ~[Branch
PI p el N e op;(;;z?jnd |* v 32? 7 V|) i Iroagni(C:
] str rfL2 Mp3 2| <N KON |« Mp4 v
* add completes in RIS - —xa[DZ VA — {WEE - — — [— -
Stage 5 op ra
. Z=X["X Y
. sub is fetched from At >Decode—> ATV
location 512 after operation | | il
successful brl vV v v
T I zal 144 } — — — {MD4 } — — H+ — -
Data
512: sub ... 4. Pt T memory
...... “g(f?e%rsy »| Decode load/store V¥ >%
112: str rl2, #32 d Mp5
108: brl r9,rl1, 001 '%:% %
104: |d r7, r5, #128 IR o ettt e e ——— 1
100: add r4, r6, 18 T

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

Chapter 5—Processor Design—Advanced Topics\

Functions of the Pipeline
Registers in SRC

(/ 524

* Registers between stages 1 and 2:
* |12 holds full instruction including any register fields and
constant
 PC2 holds the incremented PC from instruction fetch
* Registers between stages 2 and 3:
* I3 holds opcode and ra (needed in stage 5)
X3 holds PC or aregister value (for link or 1st ALU operand)
Y3 holds c1 or c2 or aregister value as 2nd ALU operand
« MD3is used for aregister value to be stored in memory

© 1997 V. Heuring and H. Jordan /j

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan

/[5-25 Chapter 5—Processor Design—Advanced Topics\

Functions of the Pipeline
Registers in SRC (cont’'d)

* Registers between stages 3 and 4.
* |4 has op code and ra
* Z4 has memory address or result register value
¢ MD4 has value to be stored in data memory

* Registers between stages 4 and 5:

* |5 has opcode and destination register number, ra

e Z5 has value to be stored in destination register: from
ALU result, PC link value, or fetched data

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

(/ 526

« Stage 1: fetches instruction

stage 2

memory

Functions of the SRC
Pipeline Stages

« PCincremented or replaced by successful branch in

« Stage 2: decodes instruction and gets operands
 Load or store gets operands for address computation
e Store gets register value to be stored as 3rd operand
 ALU operation gets 2 registers or register and constant
« Stage 3: performs ALU operation
» Calculates effective address or does arithmetic/logic
* May pass through link PC or value to be stored in

Chapter 5—Processor Design—Advanced Topics\

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan

© 1997 V. Heuring and H. Jordan /j

(/ 527

e Load fills Z5 from memory

longer needed)
« Stage 5: writes result register

Functions of the SRC Pipeline
Stages (cont’'d)

e Stage 4. accesses data memory
e Passes Z4 to Z5 unchanged for nonmemory instructions

e Store uses address from Z4 and data from MD4 (no

75 contains value to be written, which can be ALU result,
effective address, PC link value, or fetched data

* rafield always specifies result register in SRC

Chapter 5—Processor Design—Advanced Topics\

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan

© 1997 V. Heuring and H. Jordan /j

/[5-28 Chapter 5—Processor Design—Advanced Topics\

Dependence Between Instructions
in Pipe: Hazards

* Instructions that occupy the pipeline together are being
executed in parallel

 This leads to the problem of instruction dependence,
well known in parallel processing

 The basic problem is that an instruction depends on
the result of a previously issued instruction that is not
yet complete
« Two categories of hazards
« Data hazards: incorrect use of old and new data

* Branch hazards: fetch of wrong instruction on a change
in PC

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[5-29 Chapter 5—Processor Design—Advanced Topics\

Classification of Data Hazards

* A read after write hazard (RAW) arises from a flow
dependence, where an instruction uses data produced
by a previous one

* A write after read hazard (WAR) comes from an anti-
dependence, where an instruction writes a new value
over one that is still needed by a previous instruction

* A write after write hazard (WAW) comes from an output
dependence, where two parallel instructions write the
same register and must do it in the order in which they
were issued

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

(/530

Chapter 5—Processor Design—Advanced Topics\

Data Hazards in SRC

Since all data memory access occurs in stage 4, memory
writes and reads are sequential and give rise to no
hazards

Since all registers are written in the last stage, WAW and
WAR hazards do not occur

 Two writes always occur in the order issued, and a write
always follows a previously issued read

SRC hazards on register data are limited to RAW hazards
coming from flow dependence

Values are written into registers at the end of stage 5 but
may be needed by a following instruction at the
beginning of stage 2

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

(/ 531

 Detection:

* This is usually too restrictive

 Correction:

stalling only when unavoidable

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan

Possible Solutions to the Register
Data Hazard Problem

« The machine manual could list rules specifying that a
dependent instruction cannot be issued less than a given
number of steps after the one on which it depends

« Since the operation and operands are known at each stage,
dependence on a following stage can be detected

 The dependent instruction can be “stalled” and those ahead
of it in the pipeline allowed to complete

* Result can be “forwarded” to a following inst. in a previous
stage without waiting to be written into its register

* Preferred SRC design will use detection, forwarding and

Chapter 5—Processor Design—Advanced Topics\

© 1997 V. Heuring and H. Jordan /j

/[5-32 Chapter 5—Processor Design—Advanced Topics\

Detecting Hazards and
Dependence Distance

« To detect hazards, pairs of instructions must be
considered

« Datais normally available after being written to register

« Can be made available for forwarding as early as the stage
where it is produced

« Stage 3 output for ALU results, stage 4 for memory fetch
 Operands normally needed in stage 2

 Can be received from forwarding as late as the stage in
which they are used

« Stage 3 for ALU operands and address modifiers, stage 4 for
stored register, stage 2 for branch target

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[5-33 Chapter 5—Processor Design—Advanced Topics\

Instruction Pair Hazard Interaction

Write to Reg. File

@I\br mal | y/ Earl i est av@

Read from

Reg. File Cl ass alu | oad | adr br |
' dass NLNNE 6/4 ,
Val u al u 2/ 3 4/ 2

ormal |y | oad 2/3 4/ 1 4/ 2 4/ 1 4/ 1

L at est 2/ 3 4/ 1 4/ 2 4/ 1 4/ 1
CIED 4/ 1 4/ 2 4/ 1 4/1
branch 2/ 2 4/ 2 4/ 3 412 411D

| nstructi on se lon to elimnate
hazar d,CNor nal / For war ded

« Latest needed stage 3 for store is based on address
modifier register. The stored value is not needed until
stage 4

 Store also needs an operand from ra. See Text Thl 5.1

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[5-34 Chapter 5—Processor Design—Advanced Topics\

Delays Unavoidable by Forwarding

 |nthe Table 5.1 “Load” column, we see the value
loaded cannot be available to the next instruction, even
with forwarding

e Can restrict compiler not to put a dependent instruction
in the next position after a load (next 2 positions if the
dependent instruction is a branch)

« Target register cannot be forwarded to branch from the
Immediately preceding instruction

 Code is restricted so that branch target must not be
changed by instruction preceding branch (previous 2
instructions if loaded from memory)

* Do not confuse this with the branch delay slot, which is a
dependence of instruction fetch on branch, not a
dependence of branch on something else

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[5-35 Chapter 5—Processor Design—Advanced Topics\

Stalling the Pipeline on
Hazard Detection

 Assuming hazard detection, the pipeline can be stalled
by inhibiting earlier stage operation and allowing later
stages to proceed

* A simple way to inhibit a stage is a pause signal that
turns off the clock to that stage so none of its output
registers are changed

- If stages 1 and 2, say, are paused, then something
must be delivered to stage 3 so the rest of the pipeline
can be cleared

* Insertion of nop into the pipeline is an obvious choice

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[5-36 Chapter 5—Processor Design—Advanced Topics

Example of Detecting ALU Hazards
and Stalling Pipeline

 The following expression detects hazards between
ALU instructions in stages 2 and 3 and stalls the
pipeline

(alu3 Oalu2 O((ra3=rb2)0d(ra3 =rc2) & imm2)) -
(pause2: pausel: op3 ~ 0):

« After such a stall, the hazard will be between stages 2
and 4, detected by

(alu4 Jalu2 O((ra4 =rb2) O(rad4 =rc2) 4 imm2)) -
(pause2: pausel: op3 ~ 0):

 Hazards between stages 2 & 5 require

(alub Oalu2 O((ra5=rb2)0(ra5=rc2) & Imm2)) -
(pause2: pausel: op3 ~ 0):

To stage 1

pausel ——qg

Fig 5.13 Pipeline

Clocking Signals pause2 —)

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

To stage 2

f 5-37 Chapter 5—Processor Design—Advanced Topics\

Fig 5.14 Stall Due to a Data
Dependence Between Two ALU
Instructions

Clock cycle 3 Clock cycle 4 Clock cycle 5

Clock cycle 1 Clock cycle 2
New

Stalled

Stalled > Stalled > add r5, r8, r6

Id r8, addr2

Id r8, addr2

Id r8, addr2

Fetch Id r8, addr2

instruction
\ v Y \ Y
Stalled Stalled Id r8, addr2

Fetch | addr1,r2, 13 Stalled »| add r1, r2, r3 addr1, r2, r3 addri, r2, r3
operands \ \

y) New New

ALU add @é r4

operation

Y

S

Memory | 16, 15, #1 add (r2)r3, r4
access
4 \
\ add @3, r4

Register | o117 (7. #2 sub r6, 15, #1
write \

Completed

addri, r2, r3

§
N B @

Completed Completed Bloop!

-
.

k?omputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan jj

/[5-38 Chapter 5—Processor Design—Advanced Topics\

Data Forwarding:
from ALU Instruction to ALU
Instruction

 The pair table for data dependencies says that if

forwarding is done, dependent ALU instructions can be
adjacent, not 4 apart

* For this to work, dependences must be detected and

data sent from where it is available directly to X or Y
iInput of ALU

 For adependence of an ALU instruction in stage 3 on
an ALU instruction in stage 5 the equation is

alub Jalu3 - ((ra5=rb3) - X ~Z5:
(ra5=rc3) &3 imMm3 - Y ~Z5):

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[5-39 Chapter 5—Processor Design—Advanced Topics\

Data Forwarding:
ALU to ALU Instruction (cont’'d)

For an ALU instruction in stage 3 depending on one in
stage 4, the equation is

alu4 Halu3 - ((ra4 =rb3) - X ~Z4:
(rad=rc3) [h immM3 - Y ~ Z4):

« We can see that the rb and rc fields must be available
In stage 3 for hazard detection

 Multiplexers must be put on the X and Y inputs to the
ALU so that Z4 or Z5 can replace either X3 or Y3 as
Inputs

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

f[540

Fig 5.15

Hazard

Detection

and

Can be from

either Z4 or Z5
to either Xor Y
input to ALU

rb and rc
needed in
stage 3 for
detection

A

Forwarding

hij

Chapter 5—Processor Design—Advanced Topics\

Instruction
——————— oy [« PC e~ =

. v Mex >
s A A
Instruction Inc4 >
fetch Y
Gl
IR2 'y / Register file <«— GAL
————— loprarbrccl c2} {PC2} —|—|al R1 a2 R2 a3 R3[E =52 -
| J LL "
2. rb ; ; <mp2 :
Decode] o A T cond
and 22— 222,00
d = 2 Bran_ch
022::; VY YVYY logic
AR Mp3 >[N [Jempa |
[|
————-41 R }————-[x3]-[VY3 }—{MD3} ——+|+—-
T
op ra] |
3. P L;{
ALU rb, rc 2_’|’<«;\|Mp ’i;\
operation sbecode L ls| X ALU Y
2 Z
\ A/ ¢ < Y 4
e TN . A iy ¢ B S U 5, AN S P
op ra Hazard adar | Datd
»| detection and memdry
4. »| forward unit || 2 T I
Memory <
access Decpdp >
| IV Y
\ A > |Mp5
YV — Hazad |
—_—— = IR5 detection and} |- Z5 _——_—_——_— — = =+ — —
forward unit [—
5. op ra
ra op,ra wate

¥ V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[5-41 Chapter 5—Processor Design—Advanced Topics\

Restrictions Left If Forwarding
Done Wherever Possible

—

(1) Branch delay slot br r4
add . ..

 The instruction after a branch is always executed, ...
whether the branch succeeds or not.
Id r4, 4(r5)

(2) Load delay slot nop

* Aregister loaded from memory cannot be used negr6,r4
as an operand in the next instruction. 4 10, 1000

 Aregister loaded from memory cannot be used nop
as a branch target for the next two instructions. nop

br r0
(3) Branch target !

 Result register of ALU or ladr instruction cannot notro.rl

. . nop
be used as branch target by the next instruction. |, "o

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

f5-42 Chapter 5—Processor Design—Advanced Topics\

Questions for Discussion

« How and when would you debug this design?

¢ How does RTN and similar Hardware Description
Languages fit into testing and debugging?

 What tools would you use, and which stage?
 What kind of software test routines would you use?

« How would you correct errors at each stage in the
design?

k?omputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan jj

/[5-43 Chapter 5—Processor Design—Advanced Topics\

Instruction-Level Parallelism

A pipeline that is full of useful instructions completes at
most one every clock cycle

 Sometimes called the Flynn limit

« If there are multiple function units and multiple
Instructions have been fetched, then it is possible to
start several at once

« Two approaches are: superscalar

 Dynamically issue as many prefetched instructions to idle
function units as possible

« and Very Long Instruction Word (VLIW)

« Statically compile long instruction words with many
operations in aword, each for a different function unit

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[5-44 Chapter 5—Processor Design—Advanced Topics\

Character of the Function Units in
Multiple Issue Machines

There may be different types of function units
* Floating-point
* Integer
* Branch

There can be more than one of the same type
Each function unit is itself pipelined
Branches become more of a problem

 There are fewer clock cycles between branches

* Branch units try to predict branch direction

* Instructions at branch target may be prefetched, and even
executed speculatively, in hopes the branch goes that way

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[5-45 Chapter 5—Processor Design—Advanced Topics\

Microprogramming: Basic ldea

 Recall control sequence for 1-bus SRC

Step Concrete RTN Control Sequence
T0 MA - PC: C -« PC+4; PCyu, MAin, INC4, C;,, Read

T1T MD - M[MA]: PC - C; C,, PC;,, Wait

T2 IR <« MD; MDout, IRin

T3 A < R[rb]; Grb, Rout, Ay,

T4 C ~ A+Rjrc]; Grec, R, ADD, C,
5 R[ra] <« C; C.ut Gra, Rin, End

« Control unit job is to generate the sequence of control
signals

« How about building a computer to do this?

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[5-46 Chapter 5—Processor Design—Advanced Topics\

The Microcode Engine

A computer to generate control signals is much
simpler than an ordinary computer

* At the simplest, it just reads the control signals in
order from a read-only memory

« The memory is called the control store

* A control store word, or microinstruction, contains a
bit pattern telling which control signals are true in a
specific step

« The major issue is determining the order in which
microinstructions are read

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[5-47 Chapter 5—Processor Design—Advanced Topics\

Fig 5.16 Block Diagram of
Microcoded Control Unit

Ck CCs Other @ —m———————.

LT mCoee T

PLA

e Microinstruction has
branch control,

Sequencer (computes

2 External
i] = Tdr) source branch address, and
JL Y i v control signal fields
Increment 4-1 Mux)
X 0 Microprogram
| e | counter can be set
) | from several sources
to do the required
Control I
k ot n sequencing
im
uBranch | | HIR |
trol
oYY Y Y Y Y e

Control signals address
PCout’ etc.

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[5-48 Chapter 5—Processor Design—Advanced Topics\

Parts of the Microprogrammed
Control Unit

e Since the control signals are just read from memory,
the main function is sequencing

* This is reflected in the several ways the uPC can be
loaded

e Output of incrementer—uPC + 1

 PLA output—start address for a macroinstruction
 Branch address from pinstruction

« External source—say for exception or reset

* Micro conditional branches can depend on condition
codes, data path state, external signals, etc.

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[5-49 Chapter 5—Processor Design—Advanced Topics\
Contents of a Microinstruction
Microinstruction format
Branch control Control signals Branch address
T T eee |
o< O 3 = e
A = o O < LL

 Main component is list of 1/0 control signal values

e Thereis a branch address in the control store

e There are branch control bits to determine when to use the
branch address and when to use pyPC + 1

© 1997 V. Heuring and H. Jordan /j

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan

/[5-50 Chapter 5—Processor Design—Advanced Topics\

0 pnCode for instruction fetch
e Common
Instruction
al pnCode for add fetch
Microaddress sequence
, * Separate
a uCode for br sequences for
each (macro)
Instruction
a3
pnCode for shr . Wide words
2n-1
- m bits wide >
< kpbranch_ o ¢ control . < Nbranch__,
control bits signals addr. bits

k?omputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan //

(/ 551

Chapter 5—Processor Design—Advanced Topics\

Tbl 5.2 Control Signals for the
add Instruction

—

8 'C_E -l—" E +

O 25|13 o g =g |5 c T BRIl slal olo
RS EES SRR EE N EEE
101 |+ |1|{0Of0OfO|2]1]0|0OfO|O|2]12]0]0|0OfO|O]|O
102 |+« |O|1[0Ofl0O|O|O]1|0OfO|O|O|O|1]0|0Of0O|O]|O
103 |+« |O|Of21|0O|0O|O|]O|1[O|0O|O|O|O|O|OfO|O]O
200 [+ |O]O|Of2|(0O|O|O]JO]1|O0OfO|O|O|O|O]1|0OfO
201 [+ |O]O|Of2(0O|2|0O]O]|OfOfO|O|JO|1]0]O0Of1|O
202 [+ |O]1|0f[0OfO|O|O]O]Of1|[O|0O|O|O]1]0|0Of1

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

« Addresses 101-103 are the instruction fetch
« Addresses 200-202 do the add

 Change of pcontrol from 103 to 200 uses a kind of
ubranch

(/ 552

ANDed with control signals

field in every pinstruction

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan

Uses for gbranching in the
Microprogrammed Control Unit

(1) Branch to start of pcode for a specific inst.
(2) Conditional control signals, e.g. CON - PC_,
(3) Looping on conditions, e.g.n #0 - ... Goto6

* Conditions will control pubranches instead of being

 Microbranches are frequent and control store addresses
are short, so it is reasonable to have a pbranch address

Chapter 5—Processor Design—Advanced Topics\

© 1997 V. Heuring and H. Jordan /j

/[5-53 Chapter 5—Processor Design—Advanced Topics\

lllustration of goranching
Control Logic

 We illustrate a pbranching control scheme by a machine
having condition code bits N and Z

 Branch control has 2 parts:

(1) selecting the input applied to the uPC and
(2) specifying whether this input or yPC + 1 is used
 We allow 4 possible inputs to uPC
 The incremented value uyPC + 1

* The PLA lookup table for the start of a macroinstruction
* An externally supplied address

 The branch address field in the pinstruction word

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[5-54 Chapter 5—Processor Design—Advanced Topics\

Fig 5.18 Branching Controls in the
Microcoded Control Unit

|
, | PLA 5branch
—) : l External address conditions
2
' |
DZL—\' A 1 v e NotN
) i 4-1 Mux e N
2 I ¢
| e NotZ
_Di | L Iner <7 UPC Branch
_ 4| r==___ | ¢ address e Z
 Unconditional
Control
store e To 1 of 4 places
v « Next
0(0(0|0|0|0|0| Control signals 244, uinstruction
iMuxcontrob—Lr‘ ¢¢¢¢ ¢ e PLA
BrUn
BrNotZ Mux Ctl Select ° External
Brz 00 Increment pPc
BrNotN 01 PLA address
BrN 10 External address
11 Branch address « Branch address

k?omputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan //

//5-55 Chapter 5—Processor Design—Advanced Topics\

Some Possible ybranches Using
the lllustrated Logic (Refer to Tbl 5.3)

—

ST NI

< 5 2 - ZO _ Cpntrol Branch | |

s 5151515 (5] S9nals |Address Branching action
0|0]O0]J0O]0O]O0 XX XXX None—next instruction
ol |1(ofo]ofo] e-- XXX |Branch to output of PLA
10 {0011]0{O0O oo XXX Br if Zto Extern. Addr.
11]10]0]0]0 |1 300 Br if Nto 300 (else next)
11 |o]ofo[z|ofo0---0 | 206 [Brif Nto 206 (else next)
11 |1{0|0|0|O 204 Br to 204

« If the control signals are all zero, the pinstruction only does
a test

* Otherwise test is combined with data path activity

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[5-56 Chapter 5—Processor Design—Advanced Topics\

Horizontal versus Vertical
Microcode Schemes

* In horizontal microcode, each control signal is
represented by a bit in the pinstruction

* In vertical microcode, a set of true control signals is
represented by a shorter code

« The name horizontal implies fewer control store words
of more bits per word

* Vertical pcode only allows RTs in a step for which
there is a vertical pinstruction code

 Thus vertical pcode may take more control store words
of fewer bits

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[557

k?omputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan //

Chapter 5—Processor Design—Advanced Topics\

Fig 5.19 A Somewhat Vertical

Encoding
ALU Register-out
ops field field

LR F5 | eee | F8

« Scheme would save (16 +7) - (4 + 3) = 16 bits/word in the
case illustrated

¥

4-16 decoder| | 3-8 decoder

I

16 ALU 7 Reg,
control control
signals signals

/[5-58 Chapter 5—Processor Design—Advanced Topics\

Fig 5.20 Completely Horizontal and
Vertical Microcoding

uPC
Vertical
control
Horizontal store
uPC control
store
W
e 3 e S48 n to 2n decoder path
SN = e
PCOUt

MA.

Inc4

WELVAIVAY

k?omputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan //

/[5-59 Chapter 5—Processor Design—Advanced Topics\

Saving Control Store Bits with
Horizontal Microcode

« Some control signals cannot possibly be true at the same
time
 One and only one ALU function can be selected
* Only one register out gate can be true with a single bus
« Memory read and write cannot be true at the same step
* A set of m such signals can be encoded using log,m bits
(log,(m + 1) to allow for no signal true)
« The raw control signals can then be generated by a k to 2k
decoder, where 2k>m (or 2<=m + 1)

 Thisis acompromise between horizontal and vertical
encoding

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[5-60 Chapter 5—Processor Design—Advanced Topics\

A Microprogrammed Control Unit
for the 1-Bus SRC

* Using the 1-bus SRC data path design gives a specific set
of control signals

« There are no condition codes, but data path signals CON
and n = 0 will need to be tested

 We will use pbranches BrCON, Brn =0, and Brn #0
 We adopt the clocking logic of Fig. 4.14

* Logic for exception and reset signals is added to the
microcode sequencer logic

« Exception and reset are assumed to have been
synchronized to the clock

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan

/[5-61 Chapter 5—Processor Design—Advanced Topics\
Tbl 5.4 The add Instruction
5 |l ol o o| [Other
Br
Addr.| x | S 8 gl Ll o| -=(Control Actions
3 rul rul | cl O < ; Addr
= |o|m|m|o|w| a| =|Sighals
100 |o0| 0l 0O0|0O|O0O]|]O| 1|1 XXX | MA <« PC: C « PC+4;
101 (00| 0[{0| 0| 0| 0] 0| O] =+ |XX| MD - MMA]: PC < C
102 (01|10 0|0[0|0] 0] =+ |XX|IR< MD; uPC — PLA;
200 (00| 0| O[O O|O| 0| O] == |XX]|AR[b];
201 (00| 0| 0[O0 0| 0] 0O|0O| =+ |XX]| C<A-+R[rc];
202 |11 | 1|0l 0| 0| 1[0]| 0| =+ |100]| R[ra] « C: uPC — 100;
* Microbranching to the output of the PLA is shown at 102
« Microbranch to 100 at 202 starts next fetch

© 1997 V. Heuring and H. Jordan /j

/[5-62 Chapter 5—Processor Design—Advanced Topics\

Getting the PLA Output in Time for
the Microbranch

e For the input to the PLA to be correct for the pbranch in
102, it has to come from MD, not IR

« An alternative is to use see-through latches for IR so the
opcode can pass through IR to PLA before the end of the

clock cycle

k?omputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan //

/[5-63 Chapter 5—Processor Design—Advanced Topics\

See-Through Latch Hardware for IR
So pPC Can Load Immediately
IRB1..270 5 UPC..00
Bus —~—{D Q|—# PLA 41D Q
5 5 10 Data must have
time to get from
S Cl —D MD across Bus,
through IR,
through the PLA,
and satisfy uPC
Clock set up time
cycle - > before trailing
Strobe S | edge of S
BUS <20 TTVAld data
Sata at P Ly Valid_data B
Data at R valid__
/
Latch delay
PLA delay 7
PLA output strobed into pPC

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

f/ 5-64

L

CON n=0 Exception Reset |

Fig 5.21 SRC Microcode Sequencer

Chapter 5—Processor Design—Advanced Topics\

)
4

400 4@[}«

Sequencer

000 ﬁ”;&a
Branch

2-1 Mux

Mux control
BrUn

BrCON

BrN#0
BrN=0
End

PLA address
External
address
) v v
4-1 Mux
Increment |«€—| uPC

"y

k?omputer Systems Design and Architecture by V. Heuring and H. Jordan

© 1997 V. Heuring and H. Jordan jj

(/565

Chapter 5—Processor Design—Advanced Topics\

Thl 5.6 Somewhat Vertical
Encoding of the SRC

—

F1 F2 F3 F4 F5 F6 F7 F8 F9
Mux | Branch End Out In Misc Gate ALU Branch
ICtl | control signals [signals ' regs. address
00 [000 BrUn [0Cont.[000 PCyyt [000 MAi, 000 Read [00 Gra (0000 ADD _
01 [001 Br-CONLEnd f001C,, [001 RCj, 001 Wait 01 Grb [0001 C=B |10 bits
10 | 010 BrCON 010 MD.. . 010 IR. [010Ld]10 Grc [0010 SHR
out Rin
11 |011Br n=0 5 5 " [011 Decr |11 None 0011 Inc4
100 Br nz0 11 Rout 011 Ain hoo con, .
101 None 100 BAout (100 Rn ho1 ¢, .
101 cloyt [101 MDip g1 stop .
110 c25yt 110 None |111 None 1111 NOT
111 None
2bits| 3 bits 1 bit 3 bits 3 bits 3 bits 2 bits 4 bits 10 bits

\Computer Systems Design and Architecture by V. Heuring and H. Jordan

© 1997 V. Heuring and H. Jordan J

/[5-66 Chapter 5—Processor Design—Advanced Topics\

Other Microprogramming Issues

e Multiway branches: often an instruction can have 4-8
cases, say address modes

* Could take 2—-3 successive pbranches, i.e. clock pulses

* The bits selecting the case can be ORed into the branch
address of the pinstruction to get a several way branch

« Say if 2 bits were ORed into the 3rd and 4th bits from the low
end, 4 possible addresses ending in 0000, 0100, 1000, and
1100 would be generated as branch targets

* Advantage is a multiway branch in one clock

A hardware push-down stack for the uPC can turn
repeated psequences into psubroutines

* Vertical pcode can be implemented using a horizontal
uengine, sometimes called nanocode

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[5-67 Chapter 5—Processor Design—Advanced Topics\

Chapter 5 Summary

* This chapter has dealt with some alternative ways of
designing a computer

* A pipelined design is aimed at making the computer fast—
target of one instruction per clock

 Forwarding, branch delay slot, and load delay slot are steps
In approaching this goal

 More than oneissue per clock is possible, but beyond the
scope of this text

 Microprogramming is a design method with a target of
easing the design task and allowing for easy design change
or multiple compatible implementations of the same
Instruction set

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

