
8-1 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Chapter 8: Input and Output

8.1 The I/O Subsystem
• I/O buses and addresses

8.2 Programmed I/O
• I/O operations initiated by program instructions

8.3 I/O Interrupts
• Requests to processor for service from an I/O device

8.4 Direct Memory Access (DMA)
• Moving data in and out without processor intervention

8.5 I/O Data Format Change and Error Control
• Error detection and correction coding of I/O data

Topics

8-2 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Three Requirements of I/O Data
Transmission

(1) Data location
• Correct device must be selected
• Data must be addressed within that device

(2) Data transfer
• Amount of data varies with device and may need be

specified
• Transmission rate varies greatly with device
• Data may be output, input, or either with a given device

(3) Synchronization
• For an output device, data must be sent only when the

device is ready to receive it
• For an input device, the processor can read data only when

it is available from the device

8-3 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Location of I/O Data

• Data location may be trivial once the device is
determined

• Character from a keyboard
• Character out to a serial printer

• Location may involve searching
• Record number on a tape drive
• Track seek and rotation to sector on a disk

• Location may not be simple binary number
• Drive, platter, track, sector, word on a disk cluster

8-4 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 8.1 Disk Data Transfer Timing

• Keyboard delivers one character about every 1/10
second at the fastest

• Rate may also vary, as in disk rotation delay followed
by block transfer

B
yt

e

B
yt

e

B
yt

e

B
yt

e

Start
disk

transfer

~106 processor cycles

Time

<10 cycles

8-5 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Synchronization—I/O Devices Are Not
Timed by Master Clock

• Not only can I/O rates differ greatly from processor
speed, but I/O is asynchronous

• Processor will interrogate state of device and transfer
information at clock ticks

• I/O status and information must be stable at the clock
tick when it is accessed

• Processor must know when output device can accept
new data

• Processor must know when input device is ready to
supply new data

8-6 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Reducing Location and Synchronization
 to Data Transfer

• Since the structure of device data location is device
dependent, device should interpret it

• The device must be selected by the processor, but
• Location within the device is just information passed to the

device

• Synchronization can be done by the processor reading
device status bits

• Data available signal from input device
• Ready to accept output data from output device

• Speed requirements will require us to use other forms of
synchronization: discussed later

• Interrupts and DMA are examples

8-7 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 8.2 Independent and Shared Memory
and I/O Buses

• Allows tailoring
bus to its
purpose, but

• Requires many
connections to
CPU (pins)

• Least expensive
option

• Speed penalty

• Memory and I/O
access can be
distinguished

• Timing and
synchronization
can be different for
each

Memory bus

Control
Address

Data

Control
I/O bus

Address
Data

(a)	Separate memory and I/O buses
	 (isolated I/O)

Memory

I/O
system

CPU

Memory bus

Control
Address

Data

I/O control

(b)	Shared address and data lines

Memory

I/O
system

CPU

Memory bus

Memory control
Address

Data

I/O control

(c)	Shared address, data, and control
	 lines (memory-mapped I/O)

Memory

I/O
system

CPU

8-8 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Memory-Mapped I/O

• Combine memory control and I/O control lines to make
one unified bus for memory and I/O

• This makes addresses of I/O device registers appear to
the processor as memory addresses

• Reduces the number of connections to the processor
chip

• Increased generality may require a few more control
signals

• Standardizes data transfer to and from the processor
• Asynchronous operation is optional with memory, but

demanded by I/O devices

8-9 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 8.3 Address Space of a Computer
Using Memory-Mapped I/O

Address
space

I/O registers: distributed among
	 many I/O devices,
	 not all used

Memory cells: all in one main
	 memory subunit

8-10 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Programmed I/O

• Requirements for a device using programmed I/O
• Device operations take many instruction times
• One word data transfers—no burst data transmission

• Program instructions have time to test device status bits,
write control bits, and read or write data at the required
device speed

• Example status bits:
• Input data ready
• Output device busy or off-line

• Example control bits:
• Reset device
• Start read or start write

8-11 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 8.4 Programmed I/O Device Interface
Structure

• Focus on the interface between the unified I/O and memory
bus and an arbitrary device. Several device registers
(memory addresses) share address decode and control logic.

CPU

Memory bus

Data

Address

Control

I/O interface

Printer

I/O interface

Keyboard

I/O interface

Disk drive

I/O device

In Out

Address decoders

Command

Device interface registers

Status

8-12 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 8.5 SRC I/O Register Address Decoder

• Assumes SRC
addresses above
FFFFF00016 are
reserved for I/O
registers

• Allows for 1024
registers of 32
bits

• Is in range
FFFF000016 to
FFFFFFFF16
addressable by
negative
displacement

Selects the
I/O space

Selects
this
device

32 12

20

addr〈31..0〉

addr〈31..12〉

addr〈11..0〉
addr〈1..0〉 (don't care)

ad
d

r〈
11

〉

Selects the specific device

Jumpers

Selects the I/O space

Status
register

Data
register

ad
d

r〈
10

〉

ad
d

r〈
3〉

ad
d

r〈
2〉

8-13 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 8.6 Interface Design for SRC Character
Output

32

1

8 8 Character

To
printer

To
CPU

address〈31..0〉

data〈31〉

(status)

Start

Done

TS

data〈7..0〉 (character)

Read (status)

Complete

Write (data)

Status
register

Address decoder

Data
register

D 1
Ready

CLR

Q

Q

D

Char

Q

Q

TS

TS

2

1

3

4

8-14 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 8.7
Synchronous,

Semi-
synchronous,

and
Asynchronous

Data Input

• Used for register to register inside CPU • Used for memory to CPU read with few
cycle memory

• Used for I/O over longer distances (feet)

Read (M)

Data (S) valid

Cycle time
of master

Strobe data (M)

Ready (M)

Data (S)

Acknowledge (S)

valid

Strobe data (M)

Read (M)

Data (S)

(a) Synchronous input (b) Semisynchronous input

(c) Asynchronous input

valid

Cycle time
of master

Complete (M)

Strobe data (M)

8-15 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 8.7c Asynchronous Data Input

Ready

Acknowledge

Dat a

St robe dat a

val id

(c) Asynchronous input

May I?

Yes, you may.

Thanks.

You’re welcome.

8-16 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Example: Programmed I/O Device Driver for
Character Output

• Device requirements:
• 8 data lines set to bits of an ASCII character
• Start signal to begin operation
• Data bits held until device returns Done signal

• Design decisions matching bus to device
• Use low-order 8 bits of word for character
• Make loading of character register signal Start
• Clear Ready status bit on Start and set it on Done
• Return Ready as sign of status register for easy testing

Output Register

Status Register

31 07
Character

Ready

Unused

Unused

8-17 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 8.8 Program Fragment for Character
Output

• For readability: I/O registers are all caps., program locations
have initial cap., and instruction mnemonics are lower case

• A 10 MIPS SRC would execute 10,000 instructions waiting
for a 1,000 character/sec printer

31 8 7 0

31 0

Ready

unused

unused char

Status register COSTAT = FFFFF110H

Output register COUT = FFFFF114H

 lar r3, Wait ;Set branch target for wait.
 ldr r2, Char ;Get character for output.
Wait: ld r1, COSTAT ;Read device status register,
 brpl r3, r1 ;Branch to Wait if not ready.
 st r2, COUT ;Output character and start device.

8-18 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 8.9 Program Fragment to Print
80-Character Line

31 8 7 0

31 0

Ready

unused

unused char

31 0
unused Pr in t

l ine

Status Register LSTAT = FFFFF130H

lar r1, Buff ;Set pointer to character buffer.
la r2, 80 ;Initialize character counter and
lar r3, Wait ; branch target.

Wait: ld r0, LSTAT ;Read Ready bit,
brpl r3, r0 ; test, and repeat if not ready.
ld r0, 0(r1) ;Get next character from buffer,
st r0, LOUT ; and send to printer.
addi r1, r1, 4 ;Advance character pointer, and
addi r2, r2, -1 ; count character.
brnz r3, r2 ;If not last, go wait on ready.
la r0, 1 ;Get a print line command,
st r0, LCMD ; and send it to the printer.

Output Register LOUT = FFFFF134H

Command Register LCMD = FFFFF138H

8-19 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Multiple Input Device Driver Software

• 32 low-speed input devices
• Say, keyboards at ≈10 characters/sec
• Max rate of one every 3 ms

• Each device has a control/status register
• Only Ready status bit, bit 31, is used
• Driver works by polling (repeatedly testing) Ready bits

• Each device has an 8 bit input data register
• Bits 7..0 of 32-bit input word hold the character

• Software controlled by pointer and Done flag
• Pointer to next available location in input buffer
• Device’s done is set when CR received from device
• Device is idle until other program (not shown) clears Done

8-20 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Driver Program Using Polling for 32-
Character Input Devices

CICTL .equ FFFFF300H ;First input control register.
CIN .equ FFFFF304H ;First input data register.
CR .equ 13 ;ASCII carriage return.
Bufp: .dcw 1 ;Loc. for first buffer pointer.
Done: .dcw 63 ;Done flags and rest of pointers.
Driver: lar r4, Next ;Branch targets to advance to next

lar r5, Check ; character, check device active,
lar r6, Start ; and start a new polling pass.

• 32 pairs of control/status and input
data registers

r0 - working reg r1 - input char.
r2 - device index r3 - none active

Dev 0 CTL

Dev 1 CTL

Dev 2 CTL

Dev 0 IN

Dev 1 IN

FFFFF300

FFFFF304

FFFFF308

FFFFF30C

FFFFF310

8-21 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Driver Program Using Polling for 32-
Character Input Devices (cont’d)

Start: la r2, 0 ;Point to first device, and
la r3, 1 ; set all inactive flag.

Check: ld r0,Done(r2) ;See if device still active, and
brmi r4, r0 ; if not, go advance to next device.
ld r3, 0 ;Clear the all inactive flag.
ld r0,CICTL(r2) ;Get device ready flag, and
brpl r4, r0 ; go advance to next if not ready.
ld r0,CIN(r2) ;Get character and
ld r1,Bufp(r2) ; correct buffer pointer, and
st r0, 0(r1) ; store character in buffer.
addi r1,r1,4 ;Advance character pointer,
st r1,Bufp(r2) ; and return it to memory.
addi r0,r0,-CR ;Check for carriage return, and
brnz r4, r0 ; if not, go advance to next device.
la r0, -1 ;Set done flag to -1 on
st r0,Done(r2) ; detecting carriage return.

Next: addi r2,r2,8 ;Advance device pointer, and
addi r0,r2,-256 ; if not last device,
brnz r5, r0 ; go check next one.
brzr r6, r3 ;If a device is active, make a new pass.

8-22 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Characteristics of the Polling Device Driver

• If all devices active and always have character ready,
• Then 32 bytes input in 547 instructions
• This is data rate of 585 KB/s in a 10 MIPS CPU
• But, if CPU just misses setting of Ready, 538 instructions

are executed before testing it again
• This 53.8 µsec delay means that a single device must run at

less than 18.6 Kchars/s to avoid risk of losing data
• Keyboards are thus slow enough

8-23 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Tbl 8.1 Signal Names and Functions for the
Centronics Printer Interface

Interface
Signal Direction Description

STROBE Out Data out strobe
D0 Out Least significant data bit
D1 Out Data bit
...
D7 Out Most significant data bit
ACKNLG In Pulse on done with last character
BUSY In Not ready
PE In No paper when high
SLCT In Pulled high
AUTOFEEDXT Out Auto line feed
INIT Out Initialize printer
ERROR In Can’t print when low
SLCTIN Out Deselect protocol

8-24 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 8.11 Centronics Printer Data Transfer
Timing

• Minimum times specified for output signals
• Nominal times specified for input signals

≥ 0.5
µs

≥ 0.5
µs

≥ 0.5
µs

D0–D7 valid data

STROBE

BUSY

ACKNLG

~ 5
µs

~ 7
µs

8-25 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

I/O Interrupts

• Key idea: instead of processor executing wait loop,
device requests interrupt when ready

• In SRC the interrupting device must return the vector
address and interrupt information bits

• Processor must tell device when to send this
information—done by acknowledge signal

• Request and acknowledge form a communication
handshake pair

• It should be possible to disable interrupts from
individual devices

8-26 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 8.12 Simplified Interrupt Circuit for
an I/O Interface

• Request and enable flags per device
• Returns vector and interrupt information on bus when

acknowledged

Interrupt
request

Interrupt
enable

vect〈7..0〉

info〈15..0〉

data〈23..16〉

data〈15..0〉

ireq

iack

D Q

Q

D Q

Q

o.c.

8-27 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 8.13 Daisy-Chained Interrupt
Acknowledge Signal

• How does acknowledge signal select one and only one
device to return interrupt information?

• One way is to use a priority chain with acknowledge
passed from device to device

I/O bus

data

ireq

iack

I/O device
0

I/O device
1

I/O device
j

8-28 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 8.14 Interrupt Logic in an I/O Interface

• Request set by
Ready, cleared
by acknowledge

• iack only sent
out if this device
not requesting

RequestReady Enable

ireq

iack(in)

o.c.

TS

TS

TS

TS

TS

Control register address

TS

TS

vect〈7..0〉

info〈15..0〉

data〈23..16〉

data〈0〉

Complete

Write

Read
1531 2324

Control register

iack data
16 0

31 30
Unused

Interrupt requestReady Interrupt enable

infovectUnused

0

data〈30〉

data〈31〉

data〈15..0〉

D Q

Q

D Q

Q

iack (out)

D Q

Q

8-29 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Getline Subroutine for Interrupt-Driven
Character I/O

unused -vect

Ready Int . req. Int . enb.

3 1 3 0 0411
CICTL

;Getline is called with return address in R31 and a pointer to a
;character buffer in R1. It will input characters up to a carriage
;return under interrupt control, setting Done to -1 when complete.
CR .equ 13 ;ASCII code for carriage return.
CIvec .equ 01F0H ;Character input interrupt vector address.
Bufp: .dw 1 ;Pointer to next character location.
Save: .dw 2 ;Save area for registers on interrupt.
Done: .dw 1 ;Flag location is -1 if input complete.
Getln: st r1, Bufp ;Record pointer to next character.

edi ;Disable interrupts while changing mask.
la r2, 1F1H ;Get vector address and device enable bit
st r2, CICTL ; and put into control register of device.
la r3, 0 ;Clear the
st r3, Done ; line input done flag.
een ;Enable Interrupts
br r31 ; and return to caller.

8-30 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Interrupt Handler for SRC Character Input

.org CIvec ;Start handler at vector address.
str r0, Save ;Save the registers that
str r1, Save+4 ; will be used by the interrupt handler.
ldr r1, Bufp ;Get pointer to next character position.
ld r0, CIN ;Get the character and enable next input.
st r0, 0(r1) ;Store character in line buffer.
addi r1, r1, 4 ;Advance pointer and
str r1, Bufp ; store for next interrupt.
lar r1, Exit ;Set branch target.
addi r0,r0, -CR ;Carriage return? addi with minus CR.
brnz r1, r0 ;Exit if not CR, else complete line.
la r0, 0 ;Turn off input device by
st r0, CICTL ; disabling its interrupts.
la r0, -1 ;Get a -1 indicator, and
str r0, Done ; report line input complete.

Exit: ldr r0, Save ;Restore registers
ldr r1, Save+4 ; of interrupted program.
rfi ;Return to interrupted program.

8-31 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

General Functions of an Interrupt Handler

(1) Save the state of the interrupted program
(2) Do programmed I/O operations to satisfy the interrupt

request
(3) Restart or turn off the interrupting device
(4) Restore the state and return to the interrupted

program

8-32 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Interrupt Response Time

• Response to another interrupt is delayed until
interrupts reenabled by rfi

• Character input handler disables interrupts for a
maximum of 17 instructions

• If the CPU clock is 20 MHz, it takes 10 cycles to
acknowledge an interrupt, and average execution rate
is 8 CPI

 Then 2nd interrupt could be delayed by
(10 + 17 × 8) / 20 = 7.3 µsec

8-33 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Nested Interrupts—Interrupting an Interrupt
Handler

• Some high-speed devices have a deadline for interrupt response
• Longer response times may miss data on a moving medium
• A real-time control system might fail to meet specifications

• To meet a short deadline, it may be necessary to interrupt the
handler for a slow device

• The higher priority interrupt will be completely processed before
returning to the interrupted handler

• Hence the designation nested interrupts
• Interrupting devices are priority ordered by shortness of their

deadlines

8-34 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Steps in the Response of a Nested Interrupt
Handler

(1) Save the state changed by interrupt (IPC and II);
(2) Disable lower priority interrupts;
(3) Reenable exception processing;
(4) Service interrupting device;
(5) Disable exception processing;
(6) Reenable lower priority interrupts;
(7) Restore saved interrupt state (IPC and II);
(8) Return to interrupted program and reenable

exceptions.

8-35 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 8.16 Interrupt Masks for Executing
Device j Handler

• Conceptually, a priority interrupt scheme could be
managed using device-enable bits

• Order the bits from left to right in order of increasing
priority to form an interrupt mask

• Value of the mask when executing device j interrupt
handler is

low priorit y high priorit y

device j enable

1 1 10 0 0 1 10 0

8-36 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 8.17 Priority Interrupt System with m = 2k
Levels

req

load

k

A B

Comparator

B < A

k

k

req0

ack0

req1

ack1

reqm–1

ackm–1

Decoder

Priority
encoder

Current level

ack

8-37 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Direct Memory Access (DMA)

• Allows external devices to access memory
without processor intervention

• Requires a DMA interface device
• Must be “set up” or programmed and transfer

initiated

8-38 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Steps a DMA Device Interface Must Take
to Transfer a Block of Data

1. Become bus master
2. Send memory address and R/W signal
3. Synchronized sending and receiving of data

using Complete signal
4. Release bus as needed (perhaps after each

transfer)
5. Advance memory address to point to next data

item
6. Count number of items transferred and check for

end of data block
7. Repeat if more data to be transferred

1. Become bus master
2. Send memory address and R/W signal
3. Synchronized sending and receiving of data

using Complete signal
4. Release bus as needed (perhaps after each

transfer)
5. Advance memory address to point to next data

item
6. Count number of items transferred and check for

end of data block
7. Repeat if more data to be transferred

8-39 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 8.18 I/O Interface Architecture for a
DMA Device

data Device

data

Device

controlBus grant

Bus request

Read, Write

Complete

address
I/O address decode

Bus
control

Memory address

Count

Control

DMA
sequencer

Packing, unpacking, and buffering

8-40 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 8.19 Multiplexer and Selector DMA
Channels

Processor

Memory

DMA multiplexer

Bus

DMA selector

Count

Address

Count 1

Address 1

Count 2

Address 2

Device
S1

Device
S2

Device
M1

Device
M2

8-41 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Error Detection and Correction

• Bit-error rate, BER, is the probability that,
when read, a given bit will be in error

• BER is a statistical property
• Especially important in I/O, where noise and

signal integrity cannot be so easily controlled
• 10-18 inside processor
• 10-8 - 10-12 or worse in outside world

• Many techniques
• Parity check
• SECDED encoding
• CRC

8-42 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Parity Checking

• Add a parity bit to the word
• Even parity: add a bit if needed to make

number of bits even
• Odd parity: add a bit if needed to make

number of bits odd
• Example: for word 10011010, to add odd

parity bit: 100110101

8-43 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Hamming Codes
• Hamming codes are a class of codes that use

combinations of parity checks to both detect and
correct errors.

• They add a group of parity check bits to the data
bits.

• For ease of visualization, intersperse the parity bits
within the data bits; reserve bit locations whose bit
numbers are powers of 2 for the parity bits. Number
the bits from l to r, starting at 1.

• A given parity bit is computed from data bits whose
bit numbers contain a 1 at the parity bit number.

8-44 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 8.20 Multiple Parity Checks Making Up a Hamming Code

• Add parity bits, Pi, to data bits, Di.

• Reserve bit numbers that are a power of 2 for parity bits.
• Example: P1 = 001, P2 = 010, P4 = 100, etc.
• Each parity bit, Pi, is computed over those data bits that have a "1"

at the bit number of the parity bit.
• Example: P2 (010) is computed from D3 (011), D6 (110), D7 (111), ...
• Thus each bit takes part in a different combination of parity checks.
• When the word is checked, if only one bit is in error, all the parity

bits that use it in their computation will be incorrect.

Bit position

P1

1

P2

2

D3

3

P4

4

D5

5

D6

6

D7 Parity or data bit

7

Check 0

Check 1

Check 2

8-45 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Example 8.1 Encode 1011 Using the
Hamming Code and Odd Parity

• Insert the data bits: P1 P2 1 P4 0 1 1
• P1 is computed from P1 ⊕ D3 ⊕ D5 ⊕ D7 = 1, so P1 = 1.
• P2 is computed from P2 ⊕ D3 ⊕ D6 ⊕ D7 = 1, so P1 = 0.
• P4 is computed from P1 ⊕ D5 ⊕ D6 ⊕ D7 = 1, so P1 = 1.

• The final encoded number is 1 0 1 1 0 1 1.

• Note that the Hamming encoding scheme assumes
that at most one bit is in error.

8-46 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

SECDED (Single Error Correct, Double
Error Detect)

• Add another parity bit, at position 0, which is computed to make
the parity over all bits, data and parity, even or odd.

• If one bit is in error, a unique set of Hamming checks will fail, and
the overall parity will also be wrong.

• Let ci be true if check i fails, otherwise true.
• In the case of a 1-bit error, the string ck-1, . . ., c1, c0 will be the

binary index of the erroneous bit.
• For example, if the ci string is 0110, then bit at position 6 is in

error.
• If two bits are in error, one or more Hamming checks will fail, but

the overall parity will be correct.
• Thus the failure of one or more Hamming checks, coupled with

correct overall parity, means that 2 bits are in error.
• This assumes that the probability of 3 or more bits being in error

is negligible.

8-47 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Example 8.2 Compute the Odd Parity
SECDED Encoding of the 8-bit value

01101011

The 8 data bits 01101011 would have 5 parity
bits added to them to make the 13-bit value
P0 P1 P2 0 P4 1 1 0 P8 1 0 1 1.

Now P1 = 0, P2 = 1, P4 = 0, and P8 = 0, and we
can compute that P0, overall parity, = 1, giving
the encoded value:

1 0 1 0 0 1 1 0 0 1 0 1 1

8-48 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Example 8.3 Extract the Correct Data
Value from the String 0110101101101,

Assuming Odd Parity

• The string shows even parity, so there must
be a single bit in error.

• Checks c2 and c4 fail, giving the binary index
of the erroneous bits as 0110 = 6, so D6 is in
error.

• It should be 0 instead of 1.

8-49 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Cyclic Redundancy Check, CRC

• When data is transmitted serially over communications
lines, the pattern of errors usually results in several or
many bits in error, due to the nature of line noise.

• The "crackling" of telephone lines is this kind of noise.
• Parity checks are not as useful in these cases.
• Instead CRC checks are used.
• The CRC can be generated serially.
• It usually consists of XOR gates.

8-50 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 8.21 CRC Generator Based on the
Polynomial x16 + x12 + x5 + 1

• The number and position of XOR gates is determined
by the polynomial.

• CRC does not support error correction but the CRC
bits generated can be used to detect multibit errors.

• The CRC results in extra CRC bits, which are appended
to the data word and sent along.

• The receiving entity can check for errors by
recomputing the CRC and comparing it with the one
that was transmitted.

b0Data b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

8-51 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 8.22 Serial Data Transmission with
Appended CRC Code

Word Time

Output transmission

Serial data bits

Word

Word

Word

Word

Word

Memory

CRC

8-52 Chapter 8—Input and Output

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Chapter 8 Summary

• I/O subsystem has characteristics that make it different
from main memory

• Speed variations
• Latency
• Band width

• This leads to 3 different kinds of I/O:
• Programmed I/O handled completely by software, from

initiation until completion
• Interrupt-driven I/O combines hardware for initiation and

software for completion
• DMA allows an all-hardware approach to I/O activities

• External connections to devices may require data
format changes, and error detection and possibly
correction

