
4-7 Chapter 4—Processor Design

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Abstract and Concrete RTN for SRC
add Instruction

Abstract RTN: (IR ← M[PC]: PC ← PC + 4; instruction_execution);
instruction_execution := (• • •
add (:= op= 12) → R[ra] ← R[rb] + R[rc]:

Step RTN
T0 MA ← PC: C ← PC + 4;
T1 MD ← M[MA]: PC ← C;
T2 IR ← MD;
T3 A ← R[rb];
T4 C ← A + R[rc];
T5 R[ra] ← C;

Tbl 4.1 Concrete RTN for the add
Instruction

• Parts of 2 RTs (IR ← M[PC]: PC ← PC + 4;) done in T0
• Single add RT takes 3 concrete RTs (T3, T4, T5)

ALU

A B

C

31 0

32 32-bit
General

Purpose Registers

R0

R31

32

C

PC

I R

MA

MD

〈31..0〉

31 0

To memory subsystem

AIF
IEx.

4-9 Chapter 4—Processor Design

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Concrete RTN for Arithmetic Instructions:
addi

• Differs from add only in step T4
• Establishes requirement for sign extend hardware

addi (:= op= 13) → R[ra] ← R[rb] + c2〈16..0〉
{2's complement sign extend} :

Concrete RTN for addi:

Abstract RTN:

Step RTN
T0. MA ← PC: C ← PC + 4;
T1. MD ← M[MA]; PC ← C;
T2. IR ← MD;
T3. A ← R[rb];
T4. C ← A + c2〈16..0〉 {sign ext.};
T5. R[ra] ← C;

Instr Fetch
Instr Execn.

ALU

A B

C

31 0

32 32-bit
General

Purpose Registers

R0

R31

32

C

PC

I R

MA

MD

〈31..0〉

31 0

To memory subsystem

A

4-11 Chapter 4—Processor Design

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Abstract and Concrete RTN for
Load and Store

ld (:= op= 1) → R[ra] ← M[disp] :
st (:= op= 3) → M[disp] ← R[ra] :

where
disp〈31..0〉 := ((rb=0) → c2〈16..0〉 {sign ext.} :

(rb≠0) → R[rb] + c2〈16..0〉 {sign extend, 2's comp.}) :

Step RTN for ld RTN for st
T0–T2 Instruction fetch
T3 A ← (rb = 0 → 0: rb ≠ 0 → R[rb]);
T4 C ← A + (16@IR〈16〉#IR〈15..0〉);
T5 MA ← C;
T6 MD ← M[MA]; MD ← R[ra];
T7 R[ra] ← MD; M[MA] ← MD;

Tbl 4.3 The ld and St (load/store register from memory) Instructions

4-13 Chapter 4—Processor Design

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Concrete RTN for Conditional Branch

br (:= op= 8) → (cond → PC ← R[rb]):
cond := (c3〈2..0〉=0 → 0: never

c3〈2..0〉=1 → 1: always
c3〈2..0〉=2 → R[rc]=0: if register is zero
c3〈2..0〉=3 → R[rc]≠0: if register is nonzero
c3〈2..0〉=4 → R[rc]〈31〉=0: if positive or zero
c3〈2..0〉=5 → R[rc]〈31〉=1): if negative

Step RTN
T0–T2 Instruction fetch
T3 CON ← cond(R[rc]);
T4 CON → PC ← R[rb];

Tbl 4.4 The Branch Instruction, br

4-15 Chapter 4—Processor Design

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Abstract and Concrete RTN for SRC Shift
Right

shr (:= op = 26) → R[ra]〈31..0〉 ← (n @ 0) # R[rb]〈31..n〉 :
n := ((c3〈4..0〉 = 0) → R[rc]〈4..0〉 : Shift count in register

(c3〈4..0〉 ≠ 0) → c3〈4..0〉): or constant field of
instruction

Step Concrete RTN
T0–T2 Instruction fetch
T3 n ← IR〈4..0〉;
T4 (n = 0) → (n ← R[rc]〈4..0 〉);
T5 C ← R[rb];
T6 Shr (:= (n ≠ 0) → (C〈31..0 〉 ← 0#C〈31..1 〉: n ← n - 1; Shr));
T7 R[ra] ← C;

step T6 is repeated n times

Tbl 4.5 The shr Instruction

