
2-3 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig. 2.1 Programmer’s Models of
Various Machines

We saw in Chap. 1 a variation in number and type of storage cells

216 bytes

of main

memory

capacity

Fewer

 than 100

instructions

7

15

A

216 – 1

B

IX

SP

PC

0

12 general

purpose

registers

More than 300

instructions

More than 250

instructions

More than 120

instructions

232 – 1

252 – 1

0

PSW

Status

R0

PC

R11

AP

FP

SP

0 31 0

32

64-bit

floating point

registers

(introduced 1993)(introduced 1981)(introduced 1975) (introduced 1979)

0

31

0 63

32 32-bit

general

purpose

registers

0

31

0 31

More than 50

32-bit special

purpose

registers

0 31

252 bytes

of main

memory

capacity

0

M6800 VAX11 PPC601

220 – 1

AX

BX

CX

DX

SP

BP

SI

DI

15 7 08

IP

Status

Address

and

count

registers

CS

DS

SS

ES

Memory

segment

registers

220 bytes

of main

memory

capacity

0

I8086

232 bytes

of main

memory

capacity

Data

registers6 special

purpose

registers

2-13 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.2 The 4-Address Machine and
Instruction Format

• Explicit addresses for operands, result, & next instruction
• Example assumes 24-bit addresses

• Discuss: size of instruction in bytes

Memory

Op1Addr:
Op2Addr:

Op1
Op2

ResAddr:

NextiAddr:

Bits: 8 24 24

Instruction format

24 24

Res

Nexti

CPU add, Res, Op1, Op2, Nexti (Res ← Op1 + Op2)

add ResAddr Op1Addr Op2Addr NextiAddr
Which

operation
Where to

put result Where to find operands

Where to find

next instruction

2-14 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.3 The 3-Address Machine and
Instruction Format

• Address of next instruction kept in processor state register—
the PC (except for explicit branches/jumps)

• Rest of addresses in instruction
• Discuss: savings in instruction word size

Memory

Op1Addr:
Op2Addr:

Op1

Program

counter

Op2

ResAddr:

NextiAddr:

Bits: 8 24 24

Instruction format

24

Res

Nexti

CPU

Where to find

next instruction

24

add, Res, Op1, Op2 (Res ← Op2 + Op1)

add ResAddr Op1Addr Op2Addr
Which

operation
Where to

put result Where to find operands

2-15 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.4 The 2-Address Machine and
Instruction Format

• Result overwrites Operand 2
• Needs only 2 addresses in instruction but less choice in

placing data

Memory

Op1Addr:

Op2Addr:

Op1

Program

counter

Op2,Res

NextiNextiAddr:

Bits: 8 24 24

Instruction format

CPU

Where to find

next instruction

24

add Op2, Op1 (Op2 ← Op2 + Op1)

add Op2Addr Op1Addr
Which

operation

Where to

put result

Where to find operands

2-16 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.5 1-Address Machine and
Instruction Format

• Special CPU register, the accumulator,
supplies 1 operand and stores result

• One memory address used for other operand

Need instructions to load
and store operands:
LDA OpAddr
STA OpAddr

Memory

Op1Addr: Op1

Nexti
Program

counter

Accumulator

NextiAddr:

Bits: 8 24

Instruction format

CPU

Where to find

next instruction

24

add Op1 (Acc ← Acc + Op1)

add Op1Addr
Which

operation
Where to find

operand1

Where to find

operand2, and

where to put result

2-17 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.6 The 0-Address, or Stack,
Machine and Instruction Format

• Uses a push-down stack in CPU
• Arithmetic uses stack for both operands and the result
• Computer must have a 1-address instruction to push and pop

operands to and from the stack

Memory

Op1Addr:

TOS

SOS

etc.

Op1

Program

counter

NextiAddr: Nexti

Bits:

Format

Format

8 24

CPU

Where to find

next instruction

Stack

24

push Op1 (TOS ← Op1)

Instruction formats

add (TOS ← TOS + SOS)

push Op1Addr
Operation

Bits: 8

add
Which operation

Result

Where to find operands,

and where to put result

(on the stack)

2-19 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.7 General Register Machine and
Instruction Formats

• It is the most common choice in today’s general-purpose computers
• Which register is specified by small “address” (3 to 6 bits for 8 to 64

registers)
• Load and store have one long & one short address: 1-1/2 addresses
• Arithmetic instruction has 3 “half” addresses

Memory

Op1Addr: Op1
load

Nexti Program

counter

load R8, Op1 (R8 ← Op1)

CPU

Registers

R8

R6

R4

R2

Instruction formats

R8load Op1Addr

add R2, R4, R6 (R2 ← R4 + R6)

R2add R6R4

2-23 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.8 Common Addressing Modes

3Op'nInstr

LOAD #3,

a) Immediate Addressing
(Instruction contains the operand.)

Addr of A
Operand

Memory

Op'nInstr

b) Direct Addressing
(Instruction contains
address of operand)

LOAD A, ...

Address of address of A

Operand Addr

Memory

Op'nInstr

c) Indirect Addressing
(Instruction contains
address of address

of operand)

LOAD (A), ...

Operand

Operand

Memory
Op'nInstr

d) Register Indirect Addressing
(register contains address of operand)

LOAD [R2], ...

R2 . . .

R2 Operand Addr.

Operand

Memory
Op'nInstr

e) Displacement (Based) (Indexed) Addressing
(address of operand = register +constant)

LOAD 4[R2], ...

R2 4

Operand Addr.

+

R2 PC

Operand

Memory
Op'n

f) Relative Addressing
(Address of operand = PC+constant)

LOADRel 4[PC], ...

4

Operand Addr.

+

Instr

2-24 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Example: Computer, SRC
Simple RISC Computer

• 32 general purpose registers of 32 bits
• 32-bit program counter, PC, and instruction register, IR
• 232 bytes of memory address space

R0

R31

PC

IR

The SRC CPU Main memory

31 70 0

0

R[7] means contents

of register 7

M[32] means contents

of memory location 32232 – 1

32 32-bit

general

purpose

registers

232

bytes

of

main

memory

2-26 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

SRC Basic Instruction Formats

• There are three basic instruction format types
• The number of register specifier fields and length of the

constant field vary
• Other formats result from unused fields or parts
• Details of formats on next slide

31 27 26 22 21 0

31 27

27

26

26

22

22

21

2131

17 16

17 16 12 11

0

0

op r a

rb

r crb

r a

r a

op

op

c1

c2

c3

Type 1

Type 2

Type 3

2-27 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.9
(Partial)

Total of 7
Detailed
Formats

Op
1. Id, st, la,

addi, andi, ori rb c2

Instruction formats Example

31 27 26 22 21 17 16 0
Id r3, A

Id r3, 4(r5)

addi r2, r4, #1

(R[3] = M[A])

(R[3] = M[R[5] + 4])

 (R[2] = R[4] +1)

ra

Op2. Idr, str, lar c1
31 2726 22 21 0 Idr r5, 8

Iar r6, 45
(R[5] = M[PC + 8])

(R[6] = PC + 45)ra

Op3. neg, not unused
31 27 26 22 21 17 16 0

neg r7, r9 (R[7] = – R[9])ra

unused

rc

Op4. br unused
31 27 26 22 21 17 1216 11 2 0 brzr r4, r0

(branch to R[4] if R[0] == 0)rb rc (c3) Cond

Op5. brl unused
31 27 26 22 21 17 16 0 brlnz r6, r4, r0

(R[6] = PC; branch to R[4] if R[0] ≠ 0)ra rb rc
1211 2

Cond

(c3)Op unused
31 27 26 22 21 17 16 0 shl r2, r4, r6

(R[2] = R[4] shifted left by count in R[6])ra rb rc
12 4

4

00000

(c3)Op
7. shr, shra

shl, shic

unused
31 27 26 22

7a

7b

21 17 0 shr r0, r1, #4

(R[0] = R[1] shifted right by 4 bitsra rb

2
Count

Op6. add, sub,

and, or

unused
31 27 26 22 21 17 16 0

add r0, r2, r4 (R[0] = R[2] + R[4])ra rb rc
1211

Op8. nop, stop unused
31 27 0

stop
26

unused

(c3)

(c3)

(c3)

2-41 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTN Instruction Formatting Uses
Renaming of IR Bits

Instruction formats
 op〈4..0〉 := IR〈31..27〉: operation code field
 ra〈4..0〉 := IR〈26..22〉: target register field
 rb〈4..0〉 := IR〈21..17〉: operand, address index, or
 branch target register
 rc〈4..0〉 := IR〈16..12〉: second operand, conditional
 test, or shift count register
 c1〈21..0〉 := IR〈21..0〉: long displacement field
 c2〈16..0〉 := IR〈16..0〉: short displacement or
 immediate field
 c3〈11..0〉 := IR〈11..0〉: count or modifier field

2-42 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Specifying Dynamic Properties of SRC:
RTN Gives Specifics of Address

Calculation

• Renaming defines displacement and relative addresses
• New RTN notation is used

• condition → expression means if condition then
expression

• modifiers in { } describe type of arithmetic or how short
numbers are extended to longer ones

• arithmetic operators (+ - * / etc.) can be used in expressions
• Register R[0] cannot be added to a displacement

Effective address calculations (occur at runtime):

disp〈31..0〉 := ((rb=0) → c2 〈16..0〉 {sign extend}: displacement
(rb≠0) → R[rb] + c2〈16..0 〉 {sign extend, 2’s comp.}): address

rel〈31..0〉 := PC〈31..0〉 + c1〈21..0 〉 {sign extend, 2’s comp.}: relative
address

2-44 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Instruction Interpretation: RTN
Description of Fetch-Execute

• Need to describe actions (not just declarations)
• Some new notation

instruction_interpretation := (
¬Run∧ Strt → Run ← 1:
Run → (IR ← M[PC]: PC ← PC + 4; instruction_execution));

Logical NOT
Logical AND

Register transfer Separates statements
that occur in sequence

2-48 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTN Instruction Execution for Load and
Store Instructions

• The in-line definition (:= op=1) saves writing a separate
definition ld := op=1 for the ld mnemonic

• The previous definitions of disp and rel are needed to
understand all the details

instruction_execution := (
 ld (:= op= 1) → R[ra] ← M[disp]: load register
 ldr (:= op= 2) → R[ra] ← M[rel]: load register relative
 st (:= op= 3) → M[disp] ← R[ra]: store register
 str (:= op= 4) → M[rel] ← R[ra]: store register relative
 la (:= op= 5) → R[ra] ← disp: load displacement address
 lar (:= op= 6) → R[ra] ← rel: load relative address

2-49 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

SRC RTN—The Main Loop

ii := (¬Run∧ Strt → Run ← 1:
Run → (IR ← M[PC]: PC ← PC + 4;
ie));

ii := instruction_interpretation:
ie := instruction_execution :

ie := (
 ld (:= op= 1) → R[ra] ← M[disp]: Big switch
 ldr (:= op= 2) → R[ra] ← M[rel]: statement
 . . . on the opcode
 stop (:= op= 31) → Run ← 0:
); ii

Thus ii and ie invoke each other, as coroutines.

2-51 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTN Descriptions of SRC Branch
Instructions

• Branch condition determined by 3 lsbs of instruction
• Link register (R[ra]) set to point to next instruction

cond := (c3〈2..0〉=0 → 0: never
c3〈2..0〉=1 → 1: always
c3〈2..0〉=2 → R[rc]=0: if register is zero
c3〈2..0〉=3 → R[rc]≠0: if register is nonzero
c3〈2..0〉=4 → R[rc]〈31〉=0: if positive or zero
c3〈2..0〉=5 → R[rc]〈31〉=1): if negative

br (:= op= 8) → (cond → PC ← R[rb]): conditional branch
brl (:= op= 9) → (R[ra] ← PC:

 cond → (PC ← R[rb])): branch and link

2-52 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTN for Arithmetic and Logic

• Logical operators: and ∧ or ∨ and not ¬

add (:= op=12) → R[ra] ← R[rb] + R[rc]:
addi (:= op=13) → R[ra] ← R[rb] + c2〈16..0〉 {2's comp. sign
ext.}:
sub (:= op=14) → R[ra] ← R[rb] - R[rc]:
neg (:= op=15) → R[ra] ← -R[rc]:
and (:= op=20) → R[ra] ← R[rb] ∧ R[rc]:
andi (:= op=21) → R[ra] ← R[rb] ∧ c2〈16..0〉 {sign extend}:
or (:= op=22) → R[ra] ← R[rb] ∨ R[rc]:
ori (:= op=23) → R[ra] ← R[rb] ∨ c2〈16..0〉 {sign extend}:
not (:= op=24) → R[ra] ← ¬R[rc]:

2-53 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTN for Shift Instructions

• Count may be 5 lsbs of a register or the instruction
• Notation: @ - replication, # - concatenation

n := ((c3〈4..0〉=0) → R[rc]〈4..0 〉:
(c3〈4..0〉≠0) → c3 〈4..0〉):

shr (:= op=26) → R[ra]〈31..0 〉 ← (n @ 0) # R[rb] 〈31..n〉:
shra (:= op=27) → R[ra]〈31..0 〉 ← (n @ R[rb] 〈31〉) # R[rb] 〈31..n〉:
shl (:= op=28) → R[ra]〈31..0 〉 ← R[rb] 〈31-n..0〉 # (n @ 0):
shc (:= op=29) → R[ra]〈31..0 〉 ← R[rb] 〈31-n..0〉 # R[rb]〈31..32-n 〉:

2-56 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

End of RTN Definition of
instruction_execution

• We will find special use for nop in pipelining
• The machine waits for Strt after executing stop
• The long conditional statement defining

instruction_execution ends with a direction to go repeat
instruction_interpretation, which will fetch and execute the
next instruction (if Run still =1)

nop (:= op= 0) → : No operation
stop (:= op= 31) → Run ← 0: Stop instruction
); End of instruction_execution
 instruction_interpretation.

2-61 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.11 Register Transfers Hardware
and Timing for a Single-Bit Register

Transfer: A ← B
• Implementing the RTN statement A ← B

Strobe

(a) Hardware (b) Timing

Strobe

B

A

1

0

1

0

1

0

D

B

Q

Q

D

A

Q

Q

2-62 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.12 Multiple Bit Register Transfer:
A〈m..1〉 ← B〈m..1〉

Strobe

(a) Individual flip-flops (b) Abbreviated notation

D

1

Q

Q

D

1

Q

Q

Strobe

D

B〈m..1〉

Q

Q

D

A〈m..1〉

Q

Q

D

2

Q D

2

Q

D

m

Q D

m

B A

Q

Q Q

Q Q

m

2-63 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.13 Data Transmission View of
Logic Gates

• Logic gates can be used to control the transmission of data:

Data gate

Controlled complement

Data merge

data

gate

data

control

gate→data

gate→0

control→data

control→data

data 1

data1(2),

provided

data2(1)

is zero

data 2

data 1

data 2

2-64 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.14 Two-Way Gated Merge, or
Multiplexer

• Data from multiple sources can be selected for
transmission

x y

y

x
Gx

y
Gy

m

x
m

m
m

Time

2-65 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.15 Basic Multiplexer and Symbol
Abbreviation

• Multiplexer gate signals Gi may be produced by a
binary to one-out-of-n decoder

D0

D1

G0

Gn–1

Dn–1

m

An n-way gated merge An n-way multiplexer with decoder

(a) Multiplexer in terms of gates (b) Symbol abbreviation

m

m

m

D0

D1

m

m

m

Dn–1
m

k

Select

G1

m

m

m

2-66 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.16 Separating Merged Data

• Merged data can be separated by gating at the right time
• It can also be strobed into a flip-flop when valid

x y

Gx

m

x
m

0

Time

2-67 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.17 Multiplexed Register
Transfers Using Gates and Strobes

• Selected gate and strobe determine which RT
• A←C and B←C can occur together, but not A←C and B←D

GC

SA

SB

GC

Hold time

Propagation time

SB

m
m

D

C

Q

Q

GD

Gates Strobes

m

m

mm
D

D

Q

Q

D

A

Q

Q

D

B

Q

Q

m

2-68 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.18 Open-Collector NAND Gate
Output Circuit

+V

+V

Out

+V

Inputs Output

0v

0v

+V

+V

0v

+V

0v

+V

Open

Open

Open

Closed

(Out = +V)

(Out = +V)

(Out = +V)

(Out = 0v)

(a) Open-collector NAND

	 truth table

(b) Open-collector NAND (c) Symbol

o.c.

2-69 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.19 Wired AND Connection of
Open-Collector Gates

+V

a bOut

a b
Wired AND

output
Switch

Closed(0)

Closed(0)

Open (1)

Open (1)

Closed(0)

Open (1)

Closed(0)

Open (1)

0v (0)

0v (0)

0v (0)

+V (1)

(a) Wired AND connection (b) With symbols

(c) Truth table

+V

o.c. o.c.

2-70 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.20 Open-Collector Wired OR Bus

• DeMorgan’s OR by not of AND of NOTS
• Pull-up resistor removed from each gate - open

collector
• One pull-up resistor for whole bus
• Forms an OR distributed over the connection

+V

Dn–1

Gn–1

D1

G1

D0

G0

o.c. o.c. o.c.

2-71 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.21 Tri-State Gate Internal
Structure and Symbol

Data

Enable

(a) Tri-state gate structure (b) Tri-state gate symbol

(c) Tri-state gate truth table

Data

Enable

Out OutTri-

state

+V

Enable Data Output

0

0

1

1

0

1

0

1

Hi-Z

Hi-Z

0

1

2-72 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.22 Registers Connected by a
Tri-State Bus

• Can make any register transfer R[i]←R[j]
• Can’t have Gi = Gj = 1 for i≠j
• Violating this constraint gives low resistance path from power

supply to ground—with predictable results!

m

S0

m

m

G0

R[0]

Tri-state bus

m

S1

m

m

m

G1

D

R[1]

Q

Q

m

Sn–1

m

m

Gn–1

D

R[n – 1]

Q

Q

D Q

Q

2-73 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.23 Registers and Arithmetic Units
Connected by One Bus

Combinational
logic—no
memory

Example:
Abstract RTN
R[3] ← R[1]+R[2];

 Concrete RTN
Y ← R[2];
Z ← R[1]+Y;
R[3] ← Z;

Control Sequence
R[2]out, Yin;
R[1]out, Zin;
Zout, R[3]in;

Notice that what could be described in one step in the abstract RTN took three steps on this
particular hardware

R[0]in

Yin

R[0]out

m

m

m

m

m

m
R[0]

Incrementer

Adder

D Q

R[1]in R[1]out

m
D Q

R[n – 1]in R[n – 1]out

m
D Q

Q

Q

Q

WinWout

m

Zout

W

DQ

Q

Zin

Z

DQ

Q

R[1]

R[n – 1]

D Q

Q

Y

