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Fig. 2.1  Programmer’s Models of 
Various Machines

We saw in Chap. 1  a variation in number and type of storage cells
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Fig 2.2  The 4-Address Machine and  
Instruction Format

• Explicit addresses for operands, result, & next instruction
• Example assumes 24-bit addresses

• Discuss: size of instruction in bytes
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Fig 2.3  The 3-Address Machine and 
Instruction Format

• Address of next instruction kept in processor state register—
the PC (except for explicit branches/jumps)

• Rest of addresses in instruction
• Discuss: savings in instruction word size
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Fig 2.4 The 2-Address Machine and 
Instruction Format

• Result overwrites  Operand 2
• Needs only 2 addresses in instruction but less choice in 

placing data
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Fig 2.5  1-Address Machine and 
Instruction Format

• Special CPU register, the accumulator, 
supplies 1 operand and stores result

• One memory address used for other operand

Need instructions to load 
and store operands:
LDA OpAddr
STA OpAddr
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Fig 2.6  The 0-Address, or Stack, 
Machine and Instruction Format

• Uses a push-down stack in CPU
• Arithmetic uses stack for both operands and the result
• Computer must have a 1-address instruction to push and pop 

operands to and from the stack
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Fig 2.7  General Register Machine and 
Instruction Formats

• It is the most common choice in today’s general-purpose computers
• Which register is specified by small “address” (3 to 6 bits for 8 to 64 

registers)
• Load and store have one long & one short address: 1-1/2 addresses
• Arithmetic instruction has 3 “half” addresses
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Fig 2.8  Common Addressing Modes
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Example: Computer, SRC
Simple RISC Computer

• 32 general purpose registers of 32 bits
• 32-bit program counter, PC, and instruction register, IR
• 232 bytes of memory address space

R0

R31

PC

IR

The SRC CPU Main memory

31 70 0

0

R[7] means contents
of register 7

M[32] means contents
of memory location 32232 – 1

32 32-bit
general
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232
bytes

of
main

memory
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SRC Basic Instruction Formats

• There are three basic instruction format types
• The number of register specifier fields and length of the 

constant field vary
• Other formats result from unused fields or parts
• Details of formats on next slide
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Fig 2.9 
(Partial) 

Total of 7 
Detailed 
Formats

Op
1. Id, st, la,
addi, andi, ori rb c2

Instruction formats Example

31 27 26 22 21 17 16 0
Id r3, A
Id r3, 4(r5)
addi  r2, r4, #1

(R[3] = M[A])
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ra

Op2. Idr, str, lar c1
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Op3. neg, not unused
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Op4. br unused
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(branch to R[4] if R[0] == 0)rb rc (c3) Cond

Op5. brl unused
31 27 26 22 21 17 16 0 brlnz r6, r4, r0
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RTN Instruction Formatting Uses 
Renaming of IR Bits

Instruction formats
     op〈4..0〉 := IR〈31..27〉: operation code field
     ra〈4..0〉 := IR〈26..22〉: target register field
     rb〈4..0〉 := IR〈21..17〉: operand, address index, or
                                                  branch target register
     rc〈4..0〉 := IR〈16..12〉: second operand, conditional
                                                  test, or shift count register
     c1〈21..0〉 := IR〈21..0〉: long displacement field
     c2〈16..0〉 := IR〈16..0〉: short displacement or
                                                  immediate field
     c3〈11..0〉 := IR〈11..0〉: count or modifier field
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Specifying Dynamic Properties of SRC: 
RTN Gives Specifics of Address 

Calculation

• Renaming defines displacement and relative addresses
• New RTN notation is used

• condition → expression  means  if condition then 
expression

• modifiers in { } describe type of arithmetic or how short 
numbers are extended to longer ones

• arithmetic operators (+ - * / etc.) can be used in expressions
• Register R[0] cannot be added to a displacement

Effective address calculations (occur at runtime):

disp〈31..0〉 := ((rb=0) → c2 〈16..0〉 {sign extend}: displacement
(rb≠0) → R[rb] + c2〈16..0 〉 {sign extend, 2’s comp.} ): address

rel〈31..0〉 := PC〈31..0〉 + c1〈21..0 〉 {sign extend, 2’s comp.}: relative
address
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Instruction Interpretation: RTN 
Description of Fetch-Execute

• Need to describe actions (not just declarations)
• Some new notation

instruction_interpretation := (
¬Run∧ Strt → Run ← 1:
Run → (IR ← M[PC]: PC ← PC + 4; instruction_execution) );

Logical NOT
Logical AND

Register transfer Separates statements
that occur in sequence
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RTN Instruction Execution for Load and 
Store Instructions

• The in-line definition (:= op=1) saves writing a separate 
definition ld := op=1  for the ld mnemonic

• The previous definitions of disp and rel are needed to 
understand all the details

instruction_execution := (
     ld (:= op= 1) → R[ra] ← M[disp]: load register
     ldr (:= op= 2) → R[ra] ← M[rel]: load register relative
     st (:= op= 3) → M[disp] ← R[ra]: store register
     str (:= op= 4) → M[rel] ← R[ra]: store register relative
     la (:= op= 5 ) → R[ra] ← disp: load displacement address
     lar (:= op= 6) → R[ra] ← rel: load relative address
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SRC RTN—The Main Loop

ii := (  ¬Run∧ Strt → Run ← 1:
Run → (IR ← M[PC]: PC ← PC + 4; 
ie) );

ii := instruction_interpretation: 
ie :=  instruction_execution : 

ie := (
     ld (:= op= 1) → R[ra] ← M[disp]: Big switch
     ldr (:= op= 2) → R[ra] ← M[rel]: statement
     . . . on the opcode
     stop (:= op= 31) → Run ← 0:
);  ii

Thus ii and ie invoke each other, as coroutines.
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RTN Descriptions of SRC Branch 
Instructions

• Branch condition determined by 3 lsbs of instruction
• Link register (R[ra]) set to point to next instruction

cond := ( c3〈2..0〉=0 → 0: never
c3〈2..0〉=1 → 1: always
c3〈2..0〉=2 → R[rc]=0: if register is zero
c3〈2..0〉=3 → R[rc]≠0: if register is nonzero
c3〈2..0〉=4 → R[rc]〈31〉=0: if positive or zero
c3〈2..0〉=5 → R[rc]〈31〉=1 ): if negative

br (:= op= 8) → (cond → PC ← R[rb]): conditional branch
brl (:= op= 9) → (R[ra] ← PC: 

  cond → (PC ← R[rb]) ): branch and link
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RTN for Arithmetic and Logic

• Logical operators: and ∧  or ∨  and not ¬

add (:= op=12) → R[ra] ← R[rb] + R[rc]:
addi (:= op=13) → R[ra] ← R[rb] + c2〈16..0〉 {2's comp. sign 
ext.}:
sub (:= op=14) → R[ra] ← R[rb] - R[rc]:
neg (:= op=15) → R[ra] ← -R[rc]:
and (:= op=20) → R[ra] ← R[rb] ∧  R[rc]:
andi (:= op=21) → R[ra] ← R[rb] ∧  c2〈16..0〉 {sign extend}:
or (:= op=22) → R[ra] ← R[rb] ∨  R[rc]:
ori (:= op=23) → R[ra] ← R[rb] ∨  c2〈16..0〉 {sign extend}:
not (:= op=24) → R[ra] ←  ¬R[rc]:
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RTN for Shift Instructions

• Count may be 5 lsbs of a register or the instruction
• Notation: @ - replication, # - concatenation

n := ( (c3〈4..0〉=0) → R[rc]〈4..0 〉:
(c3〈4..0〉≠0) → c3 〈4..0〉 ):

shr (:= op=26) → R[ra]〈31..0 〉 ← (n @ 0) # R[rb] 〈31..n〉:
shra (:= op=27) → R[ra]〈31..0 〉 ← (n @ R[rb] 〈31〉) # R[rb] 〈31..n〉:
shl (:= op=28) → R[ra]〈31..0 〉 ← R[rb] 〈31-n..0〉 # (n @ 0):
shc (:= op=29) → R[ra]〈31..0 〉 ← R[rb] 〈31-n..0〉 # R[rb]〈31..32-n 〉:
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End of RTN Definition of 
instruction_execution

• We will find special use for nop in pipelining
• The machine waits for Strt after executing stop
• The long conditional statement defining 

instruction_execution ends with a direction to go repeat 
instruction_interpretation, which will fetch and execute the 
next instruction (if Run still =1)

nop (:= op= 0) → : No operation
stop (:= op= 31) → Run ← 0: Stop instruction 
); End of instruction_execution
 instruction_interpretation.



2-61 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan                         © 1997 V. Heuring and H. Jordan 

Fig 2.11  Register Transfers Hardware 
and Timing for a Single-Bit Register 

Transfer: A ← B
• Implementing the RTN statement  A ← B
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Fig 2.12  Multiple Bit Register Transfer: 
A〈m..1〉 ← B〈m..1〉

Strobe

(a) Individual flip-flops (b) Abbreviated notation
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Fig 2.13  Data Transmission View of 
Logic Gates

• Logic gates can be used to control the transmission of data:
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Fig 2.14   Two-Way Gated Merge, or 
Multiplexer

• Data from multiple sources can be selected for 
transmission
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Fig 2.15  Basic Multiplexer and Symbol 
Abbreviation

• Multiplexer gate signals Gi may be produced by a 
binary to one-out-of-n decoder
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Fig 2.16  Separating Merged Data

• Merged data can be separated by gating at the right time
• It can also be strobed into a flip-flop when valid
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Fig 2.17   Multiplexed Register 
Transfers Using Gates and Strobes

• Selected gate and strobe determine which RT
• A←C and B←C can occur together, but not A←C and B←D
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Fig 2.18  Open-Collector NAND Gate 
Output Circuit

+V

+V

Out

+V

Inputs Output

0v

0v

+V

+V

0v

+V

0v

+V

Open

Open

Open

Closed

(Out = +V)

(Out = +V)

(Out = +V)

(Out = 0v)

(a) Open-collector NAND 
	 truth table

(b) Open-collector NAND (c) Symbol

o.c.



2-69 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan                         © 1997 V. Heuring and H. Jordan 

Fig 2.19  Wired AND Connection of 
Open-Collector Gates

+V
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Fig 2.20  Open-Collector Wired OR Bus

• DeMorgan’s OR by not of AND of NOTS
• Pull-up resistor removed from each gate - open 

collector
• One pull-up resistor for whole bus
• Forms an OR distributed over the connection
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o.c. o.c. o.c.
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Fig 2.21 Tri-State Gate Internal 
Structure and Symbol

Data

Enable

(a) Tri-state gate structure (b) Tri-state gate symbol

(c) Tri-state gate truth table

Data

Enable

Out OutTri-
state

+V

Enable Data Output

0

0

1

1

0

1

0

1

Hi-Z

Hi-Z

0

1



2-72 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan                         © 1997 V. Heuring and H. Jordan 

Fig 2.22  Registers Connected by a
Tri-State Bus

• Can make any register transfer R[i]←R[j]
• Can’t have Gi = Gj = 1 for i≠j
• Violating this constraint gives low resistance path from power 

supply to ground—with predictable results!
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Fig 2.23  Registers and Arithmetic Units 
Connected by One Bus

Combinational
logic—no 
memory

Example:
Abstract RTN
R[3] ← R[1]+R[2];

 Concrete RTN
Y ← R[2];
Z ← R[1]+Y;
R[3] ← Z;

Control Sequence
R[2]out, Yin;
R[1]out, Zin;
Zout, R[3]in;

Notice that what could be described in one step in the abstract RTN took three steps on this 
particular hardware
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