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Chapter 3: Some Real Machines

Topics

3.1   Machine Characteristics and Performance
3.2   RISC versus CISC

3.3   A CISC Microprocessor: The Motorola MC68000 
3.4   A RISC Architecture: The SPARC
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Practical Aspects of Machine Cost-
Effectiveness

• Cost for useful work is fundamental issue
• Mounting, case, keyboard, etc. are dominating the cost of 

integrated circuits

• Upward compatibility preserves software investment
• Binary compatibility
• Source compatibility

• Emulation compatibility

• Performance: strong function of application
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Performance Measures

• MIPS: Millions of Instructions Per Second
• Same job may take more instructions on one machine than on 

another

• MFLOPS: Million Floating Point OPs Per Second
• Other instructions counted as overhead for the floating point

• Whetstones: Synthetic benchmark
• A program made up to test specific performance features

• Dhrystones: Synthetic competitor for Whetstone
• Made up to “correct” Whetstone’s emphasis on floating point

• SPEC: Selection of “real” programs
• Taken from the C/Unix world
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CISC Versus RISC Designs

• CISC: Complex Instruction Set Computer
• Many complex instructions and addressing modes
• Some instructions take many steps to execute
• Not always easy to find best instruction for a task

• RISC: Reduced Instruction Set Computer
• Few, simple instructions, addressing modes
• Usually one word per instruction

• May take several instructions to accomplish what CISC can do in one
• Complex address calculations may take several instructions
• Usually has load-store, general register ISA
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Design Characteristics of RISCs

• Simple instructions can be done in few clocks
• Simplicity may even allow a shorter clock period

• A pipelined design can allow an instruction to complete in every 
clock period

• Fixed length instructions simplify fetch and decode
• The rules may allow starting next instruction without necessary 

results of the previous
• Unconditionally executing the instruction after a branch
• Starting next instruction before register load is complete



3-6 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan   © 1997 V. Heuring and H. Jordan

Other RISC Characteristics

• Prefetching of instructions. (Similar to I8086.)
• Pipelining: beginning execution of an instruction before the previous 

instruction(s) have completed. (Will cover in detail in Chapter 5.)

• Superscalar operation—issuing more than one instruction simultaneously. 
(Instruction-level parallelism. Also covered in Chapter 5.)

• Delayed loads, stores, and branches. Operands may not be available when 
an instruction attempts to access them.

• Register windows—ability to switch to a different set of CPU registers with 
a single command. Alleviates procedure call/return overhead.  Discussed 
with SPARC in this chapter.
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Tbl 3.1  Order of Presenting or 
Developing a Computer ISA

• Memories: structure of data storage in the computer
• Processor-state registers

• Main memory organization

• Formats and their interpretation: meanings of register fields
• Data types

• Instruction format
• Instruction address interpretation

• Instruction interpretation: things done for all instructions
• The fetch-execute cycle
• Exception handling (sometimes deferred)

• Instruction execution: behavior of individual instructions
• Grouping of instructions into classes

• Actions performed by individual instructions
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CISC: The Motorola MC68000

• Introduced in 1979
• One of first 32-bit microprocessors

• Means that most operations are on 32-bit internal data
• Some operations may use different number of bits
• External data paths may not all be 32 bits wide

• MC68000 had a 24-bit address bus

• Complex Instruction Set Computer—CISC
• Large instruction set

• 14 addressing modes
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Fig 3.1  The MC68000 Processor State
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Features of the 68000 Processor State

• Distinction between 32-bit data registers and 32-bit address 
registers

• 16-bit instruction register
• Variable length instructions handled 16 bits at a time

• Stack pointer registers
• User stack pointer is one of the address registers

• System stack pointer is a separate single register
• Discuss: Why a separate system stack

• Condition code register: System and user bytes
• Arithmetic status (N, Z, V, C, X) is in user status byte
• System status has supervisor and trace mode flags, as well as the 

interrupt mask
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RTN Processor State for the MC68000

D[0..7]〈31..0〉: General purpose data registers
A[0..7]〈31..0〉: Address registers
A7´〈31..0〉: System stack pointer
PC〈31..0〉: Program counter
IR〈15..0〉: Instruction register
Status〈15..0〉: System status byte and user status byte
SP := A[7]: User stack pointer, also called USP
SSP := A7´: System stack pointer
C := Status〈0〉: V := Status〈1〉: Carry and Overflow flags
Z := Status〈2〉: N := Status 〈3〉: Zero and Negative flags
X := Status〈4〉: Extend flag
INT〈2..0〉 := Status 〈10..8〉: Interrupt mask in system status byte
S := Status〈13〉: T := Status 〈15〉:Supervisor state and Trace mode flags
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Main Memory in the MC68000

• The word and longword forms are “big-endian”
• The lowest numbered byte contains the most significant bit (big end) 

of the word

• Words and longwords have “hard” alignment constraints not 
described in the above RTN

• Word addresses must end in one binary 0

• Longword addresses must end in two binary zeros

Main memory:
Mb[0..224-1]〈7..0〉: Memory as bytes
Mw[ad]〈15..0〉 := Mb[ad]#Mb[ad+1]: Memory as words
Ml[ad]〈31..0〉 := Mw[ad]#Mw[ad+2]: Memory as long words
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MC68000 Supports Several Operand 
Types

• Like many CISC machines, the 68000 allows one instruction 
to operate on several types

• MOVE.B for bytes, MOVE.W for words, and MOVE.L for 
longwords; also ADD.B, ADD.W, ADD.L, etc.

• Operand length is coded as bits of the instruction word

• Bits coding operand type vary with instruction
• For use with RTN descriptions, we assume a function 

d := datalen(IR) that returns 1, 2, or 4 for operand length
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Fig 3.2  Some MC68000 Instruction 
Formats

(a) A 1-word move instruction (b) A 2-word instruction

(c) A 3-word instruction
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General Form of Addressing Modes 
in the MC68000

• A general address of an operand or result is 
specified by a 6-bit field with mode and 
register numbers

• Not all operands and results can be specified 
by a general address: some must be in 
registers

• Not all modes are legal in all parts of an 
instruction

5 4 3 2 1 0

mode reg

Provides access paths to operands
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Tbl 3.2  MC68000 Addressing Modes

Name Mode Reg. Assembler Extra Brief description
     Words  

5 4 3 2 1 0

mode reg

Data reg. direct 0 0-7 Dn 0 Dn
Addr. reg. direct 1 0-7 An 0 An
Addr. reg. indirect 2 0-7  (An) 0 M[An]
Autoincrement 3 0-7 (An)+ 0 M[An];An←An+d
Autodecrement 4 0-7 -(An) 0 An←An-d;M[An]
Based 5 0-7 disp16(An) 1 M[An+disp16]
Based indexed short 6 0-7 disp8(An,XnLo) 1 M[An+XnLo+disp8]
Based indexed long 6 0-7 disp8(An,Xn) 1 M[An+Xn+disp8]
Absolute short 7 0 addr16 1 M[addr16]
Absolute long 7 1 addr32 2 M[addr32]
Relative 7 2 disp16(PC) 1 M[PC+disp16]
Rel. indexed short 7 3 disp8(PC,XnLo) 1 M[PC+XnLo+disp8]
Rel. indexed long 7 3 disp8(PC,Xn) 1 M[PC+Xn+disp8]
Immediate 7 4 #data 1-2 data
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RTN Description of MC68000 
Addressing

• The addressing modes interpret many items
• The instruction: in the IR register

• The following 16-bit word: described as Mw[PC]
• The D and A registers in the CPU

• Many addressing modes calculate an effective memory 
address

• Some modes designate a register
• Some modes result in a constant operand
• There are restrictions on the use of some modes

5 4 3 2 1 0

mode reg
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RTN Formatting for Effective Address 
Calculation

• Either an A or a D register can be used as an index

• A 4-bit field in the 2nd instruction word specifies the index register
• Low order 8-bits of 2nd word are used as offset
• Either 16 or 32 bits of index register may be used

XR[0..15]〈31..0〉 :=
D[0..7]〈31..0〉 # A[0..7]〈31..0〉: Index register can be D or A;

xr〈3..0〉 := Mw[PC]〈15..12〉: Index specifier for index mode;
wl := Mw[PC]〈11〉: Short or long index flag;
dsp8〈7..0〉 := Mw[PC]〈7..0〉: Displacement for index mode;
index := (  (wl=0) → XR[xr]〈15..0〉: Short or

   (w1=1) → XR[xr]〈31..0〉): long index value;

disp8 = ldispd/a    Index reg     w/l   0 0 0

0: index is in data register
1: index is in address register

0 = 16 bit index
1 = 32 bit index

15   14   13   12    11   10 9 8  7                                      0
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Modes That Calculate a 
Memory Address Using a 

Register
• md and rg are the 3-bit mode and 

register fields
• ea stands for effective address

ea(md, rg) := (
   (md = 2) → A[rg 〈2..0〉]:    Mode 2 is

        A register indirect;
   (md = 3) →    Mode 3 is

(A[rg〈2..0〉]; A[rg〈2..0 〉] ← A[rg〈2..0〉] + d):      autoincrement;
   (md = 4) →    Mode 4 is

(A[rg〈2..0〉] ← A[rg〈2..0〉] - d; A[rg〈2..0 〉]):      autodecrement;
   (md = 5) →    Mode 5 is based

(A[rg〈2..0〉] + Mw[PC]; PC ← PC + 2):       or offset addressing;
   (md = 6) →    Mode 6 is based

(A[rg〈2..0〉] + index + dsp8; PC ← PC + 2):   indexed addressing;

5 4 3 2 1 0

mode reg

5 4 3 2 1 0

010 - 110 000 - 111
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Mode 7 Uses the Register 
Field to Expand the 
Number of Modes

• These modes still calculate a memory address

ea (md, rg) := 
 . . . 
(md = 7 ∧  rg = 0) →    Mode 7, register 0 is
   (Mw[PC]{sign extend to 32 bits}; PC ← PC + 2):      short absolute;
(md = 7 ∧  rg = 1) →    Mode 7, register 1 is
   (Ml[PC]; PC ← PC + 4):       long absolute;
(md = 7 ∧  rg = 2) →    Mode 7, register 2 is
   (PC + Mw[PC]{sign extend to 32 bits};       program counter

PC ← PC + 2):          relative 
addressing;
(md = 7 ∧  rg = 3) →    Mode 7, register 3 is
   (PC + index + dsp8; PC ← PC + 2) ):       relative indexed.

5 4 3 2 1 0

1   1   1 reg
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Fig 3.3  Address 
Register Indirect 

Addressing
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Fig 3.4  Mode 6: Based 
Indexed Addressing

• Three things are added to get the address

Mode 6: Based indexed addressing
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5 4 3 2 1 0

1   1   0 reg
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Mode 7-0,1: Absolute 
Addressing 

• Absolute addresses can be 16 or 32 bits

Absolut e short  addressing

11 1 0 00. . .

Operand

Main
memory

Ex: MOVE.B PRINTERPORT.W,  ...
15                                                                                           0

addr16
(Sign extend to 32-bits)

Absolut e long addressing

1 11 001. . .

15                                                                                           0

addr32Hi

addr32Lo
Concat.

Ex: MOVE.W INTVECT.L,  ...

5 4 3 2 1 0

1   1   1 000 (16-bit)
001 (32-bit)
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Mode 7, Reg 3: Relative 
Indexed Addressing

• Same as indexed mode but uses PC instead of A register as 
base

5 4 3 2 1 0

1   1   1 0   1   1

Relative indexed addressing

111 011

Program count er

. . .

Operand

Main
memory

Ex: MOVE.W LDISP (PC, D4), ...

+

disp8 = ldispd/a    Index reg     w/l   0 0 0

D0-D7
A0-A7

Index (16 or 32)

0: index is in data reg.
1: index is in address reg.

0 = 16 bit index
1 = 32 bit index

15   14   13   12    11   10 9 8  7                                      0
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memval(md, rg) := A memory address is
   ( (md〈2..1〉 = 1) ∨ (md〈2..1〉 = 2) ∨ (md〈2..0〉 = 6) ∨ used with these
   ((md〈2..0〉 = 7) ∧  (rg〈2〉 =0)) ): modes only.
opnd(md, rg) := ( The operand length in
   (d=1) → opndb(md, rg): (d=2) → opndw(md, rg): the instruction tells
   (d=4) → opndl(md, rg) ): which to use.
opndl(md, rg)〈31..0〉 := ( A long operand can be
                                           . . .      ): . . .
opndw(md, rg)〈15..0〉 := ( A word operand is
   memval(md, rg) → Mw[ea(md, rg)]〈15..0〉: similar but needs only
   md =0 → D[rg]〈15..0〉: a 16-bit immediate
   md = 1 → A[rg]〈15..0〉: following the
   (md = 7 ∧  rg = 4) → (Mw[PC]〈15..0〉: PC ← PC+2) ): instruction word.
opndb(md, rg)〈7..0〉 := ( Byte operands
                                               . . . . . .
   (md = 7 ∧  rg = 4) → (Mw[PC]〈7..0〉: PC ← PC+2) ): instruction word.

Operands in Registers or Memory Can 
Have Different Lengths
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Modes 0 and 1: Register 
Direct Addressing

• The register itself provides a place to store a result or a place 
to get an operand

• There is no memory address with this mode

5 4 3 2 1 0

0  0  0 (D)
0  0  1 (A)

reg

D0
0 00 Reg

...

D7

A0

...

A7

. . . 0 01 Reg. . .

Ex: MOVE D6, ... Ex: MOVE A6, ...

Data register direct

Data
registers Address register direct

Address
registers

OperandOperand
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Fig 3.5  Mode 7, Reg 4:  
Immediate Addressing 
Operands are stored

in the instruction

• Data length is specified by the opcode field, not the Mode/Reg 
field

1 11 10 0. . .

15                                                            0

value16Hi

value16Lo

Ex: MOVE.W #1234,  ...

11 1 100. . .

15                                                            0

value16

Ex: MOVE.L #12348678,  ...

Word Longword

1 11 10 0. . .

15                   8    7                                 0

value8

Byt e

00000000

Ex: MOVE.B #12,  ...

Instruction word and 1 or 2 following words

5 4 3 2 1 0

1   1   1 1   0   0
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Not Every Addressing Mode Can Be 
Used for Results

• The MC68000 disallows relative addressing for results
• This is captured in RTN by defining a function that is true (=

1) if the memory address specified by the mode is legal for 
results

• Register immediate is also legal for results, but will be 
handled separately

rsltadr(md, rg) := memval(md, rg) ∧  ¬(md=7 ∧ (rg=2∨ rg=3)):
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Result Modes Must Have a Place to Write 
Data: Memory or Register

rsltl(md, rg)〈31..0〉 := ( 32-bit result
   rsltadr(md, rg) → Ml[ea(md, rg)]〈31..0〉:
   md = 0 → D[rg]〈31..0〉:
   md = 1 → A[rg]〈31..0〉 ):
rsltw(md, rg)〈15..0〉 := ( 16-bit result
   rsltadr(md, rg) → Mw[ea(md, rg)]〈15..0〉:
   md = 0 → D[rg]〈15..0〉:
   md = 1 → A[rg]〈15..0〉 ):
rsltb(md, rg)〈7..0〉 := ( 8-bit result
   rsltadr(md, rg) → Mb[ea(md, rg)]〈7..0〉:
   md = 0 → D[rg]〈7..0〉:
   md = 1 → A[rg]〈7..0〉 ):    
rslt(md, rg) := ( The result length in the
   (d=1) → rsltb(md, rg): (d=2) → rsltw(md, rg): instruction tells
   (d=4) → rsltl(md, rg) ): which to use



3-30 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan   © 1997 V. Heuring and H. Jordan

MC68000 Instruction Interpretation

• Instruction interpretation is simple when exceptions are 
ignored

• Instructions are fetched 16 bits at a time
• PC is advanced by 2 as each 16-bit word is fetched
• Addressing mode may advance it a total of  2 or 4 or 

more words, under command from the control unit

Instruction_interpretation := (
Run → ( (IR〈15..0〉 ← Mw[PC]〈15..0〉: PC ← PC + 2);

instruction_execution ); ):
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Tbl 3.3  MC68000 Data Movement 
Instructions

• The op code location and size depends on the instruction 
(compare to SRC)

Inst. Operands 1st word XNZVC   Operation      Size

MOVE.B EAs, EAd 0001ddddddssssss - x x 0 0 dst ← src byte
MOVE.W EAs, EAd 0011ddddddssssss - x x 0 0 dst ← src word
MOVE.L EAs, EAd 0010ddddddssssss - x x 0 0 dst ← src long
MOVEA.W EAs, An 0011rrr001ssssss - -  -  - - An ← src word
MOVEA.L EAs, An 0010rrr001ssssss - -  -  - - An ← src long
LEA.L EAc, An 0100aaa111ssssss - -  -  - - An ← EA addr.
EXG Dx, Dy 1100xxx1mmmmmyyy - -  -  - - Dx ↔ Dy long
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RTN for a Typical MC68000 Move 
Instruction

• The temporary register tmp is used because every invocation of 
opnd() causes another fetch

tmp〈31..0〉:
move (:= op〈3..2〉 := 0) → (

tmp ← opnd(md1, rg1);
(  Z ← (tmp=0): N ← (tmp<0): V ← 0: C ← 0  ):
rslt(md2, rg2) ← tmp ):

• The instruction format for Move includes mode and 
register for source and destination addresses
op〈3..0〉 := IR〈15..12〉: rg1〈2..0〉 := IR〈2..0〉: md1〈2..0〉 := IR〈5..3〉: 
rg2〈2..0〉 := IR〈11..9〉: md2〈2..0〉 := IR〈8..6〉: 
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Tbl 3.4  MC68000 Integer Arithmetic and 
Logic Instructions

Op. Operands     Inst. word XNZVC Operation Sizes

ADD EA,Dn 1101rrrmmmaaaaaa x x x x x dst ← dst + src b, w, l

SUB EA,Dn 1001rrrmmmaaaaaa x x x x x dst ← dst - srC b, w, l

CMP EA,Dn 1011rrrmmmaaaaaa - x x x x dst-src b, w, l

CMPI #dat,EA 00001100wwaaaaaa - x x x x dst-immed.data b, w, l

MULS EA, Dn 1100rrr111aaaaaa - x x 0 0 Dn←Dn*src l←w*w

DIVS EA,Dn 1000rrr111aaaaaa - x x x 0 Dn←Dn/src l←l/w

AND EA,Dn 1100rrrmmmaaaaaa - x x 0 0 dst←dst∧ src b, w, l

OR EA,Dn 1000rrrmmmaaaaaa - x x 0 0 dst←dst∨ src b, w, l

EOR EA,Dn 1011rrrmmmaaaaaa - x x 0 0 dst←dst⊕ src b, w, l

CLR EAs 01000010wwaaaaaa - 0 1 0 0 dst∧ dst b, w, l

NEG EAs 01000100wwaaaaaa - x x x x dst←0 - dst b, w, l

TST EAs 01001010wwaaaaaa - x x 0 0 dst−0 b, w, l

NOT EAs 01000110wwaaaaaa - x x x x dst← ¬dst b, w, l
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Notes on MC68000 Arithmetic and Logic 
Instructions

• Only one operand uses EA
• The other operand is always accessed by Data register direct
• The 3-bit mmm field  specifies whether D is the source or destination, 

and whether it is B, W, or L
Byte Word Long Destination
000 001 010     Dn

100 101 110     EA

Ex: SUB EA, Dn:       1011 rrr mmm aaaaaa

Note: There are several exceptions to the rule above. See text and mfr. data sheet.

All 2-operand ALU instructions are either D →  EA or  EA  →  D.  Which is it?

  op    Dn   tbl abv.   EA
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RTN Description of a Typical MC68000 
Arithmetic Instruction

• This definition does not handle the condition codes

• Subtract is a typical arithmetic instruction
• Need a temporary register to hold an address

tmp〈31..0〉: temporary register for address

sub (:= op=9) → (
(md2〈2〉 =0) → D[rg2] ← D[rg2] - opnd(md1, rg1):
(md2〈2〉 =1) → (memval(md1, rg1) → (tmp ← ea(md1, rg1);

                                         M[tmp] ← M[tmp] - D[rg2]  ):
        ¬memval(md1, rg1) → rslt(md1, rg1) ← rslt(md1, rg1) - D[rg2])

):
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MC68000 Arithmetic Shifts and Single 
Word Rotates

• d is L or R for left or right shift, respectively
• EA form has shift count of 1

c
x

0

c
x

ASL

ASR
Dn

c

ROL

ROR

c

Dn

Op. Operands      Inst. word XV

ASd EA 1110000d11aaaaaa x x
ASd #cnt,Dn 1110cccdww000rrr x x
ASd Dm,Dn 1110RRRdww100rrr x x

ROd EA 1110011d11aaaaaa - 0
ROd #cnt,Dn 1110cccdww011rrr - 0
ROd Dm,Dn 1110RRRdww111rrr - 0
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MC68000 Logical Shifts and Extended 
Rotates

• Field ww specifies byte, word, or longword
• N and Z set according to result, C = last bit shifted out

c
x

0

c
x

0

LSL

LSR
Dn

x
c

x
c

ROXR

ROXL

Dn

Op. Operands Inst. word XV

LSd EA 1110001d11aaaaaa x 0
LSd #cnt,Dn 1110cccdww001rrr x 0
LSd Dm,Dn 1110RRRdww101rrr x 0

ROXd EA 1110010d11aaaaaa x 0
ROXd #cnt,Dn 1110cccdww010rrr x 0
ROXd Dm,Dn 1110RRRdww110rrr x 0
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MC68000 Conditional Branch and Test 
Instructions

• DBcc is used for counted loops with an optional end condition
• Scc sets a byte to the outcome of a test

Op. Operands         Inst. word       Operation

Bcc disp         0110ccccdddddddd  if (cond) then
          DDDDDDDDDDDDDDDD    PC ← PC + disp
                       
DBcc Dn,disp          0101cccc11001rrr  if ¬(cond) then Dn←Dn-1

     if (Dn≠-1) then PC←PC+disp)
                         else PC ← PC + 2
                        
Scc EA         0101cccc11aaaaaa  if (cond) then (EA) ← FFH

else (EA) ← 00H
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Conditions That Can Be Evaluated for 
Branch, Etc.

Code Meaning Name Flag expression
            
0000 true T 1
0001 false F 0
0100 carry clear CC C
0101 carry set CS C
0111 equal EQ Z
0110 not equal NE Z
1011 minus MI N
1010 plus PL N
0011 low or same LS C+Z
1101 less than LT N·V+N·V
1100 greater or equal GE N·V+N·V
1110 greater than GT N·V·Z+N·V·Z
1111 less or equal LE N·V+N·V+Z
0010 high HI C·Z
1000 overflow clear VC V
1001 overflow set VS V
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Conditional Branches First Set Condition 
Codes, Then Branch

• EQ tests the right condition codes for = 0, as above, or A = B 
following a compare, CMP A, B

if ( X = 0 ) goto LOC

TST X ;ands X with itself and sets N and Z
BEQ LOC ;branch to LOC if X = 0
.
.
.

LOC:
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MC68000 Unconditional Control 
Transfers

• Subroutine links push the return address onto the stack 
pointed to by A7 = SP

Op. Operands Inst. word Operation
                     
BRA disp          01100000dddddddd   PC ← PC + disp
               DDDDDDDDDDDDDDDD     

BSR disp     01100001dddddddd   -(SP) ← PC;  PC ← PC + disp
               DDDDDDDDDDDDDDDD      
                     
JMP EA     0100111011aaaaaa   PC ← EA
                     
JSR EA          0100111010aaaaaa   -(SP) ← PC;  PC ← EA
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MC68000 Subroutine Return Instructions

• Subroutine linkage uses stack for return address
• LINK and UNLK allocate and de-allocate multiple word stack 

frames

Op. Operands Inst. word Operation
                     
RTR 0100111001110111 CC ← (SP)+; PC ← (SP)+
                        
RTS 0100111001110101 PC ← (SP)+
                     
LINK An,disp 0100111001010rrr -(SP) ← An; An ← SP;

DDDDDDDDDDDDDDDD SP ← SP + disp
                        
UNLK An 0100111001011rrr SP ← An; An ← (SP)+
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MC68000 Assembly Code Example: 
Search an Array

• Program searches an array of bytes to find the first carriage 
return, ASCII code 13

CR EQU 13 ;Define return character.
LEN EQU 132 ;Define line length.
  ORG $1000 ;Locate LINE at 1000H.
LINE DS.B LEN ;Reserve LEN bytes of storage.
  MOVE.B #LEN-1,D0 ;Initialize D0 to count-1.
  MOVEA.L #LINE,A0 ;A0 gets start address of array.
LOOP CMPI.B (A0)+,#CR ;Make the comparison.
  DBEQ  D0,LOOP ;Double test: if LINE[131-D0]≠13
      <next instruction>  ;  then decr. D0; if D0≠-1 branch
        ;  to LOOP, else to next inst.
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Pseudo-Operations in the MC68000 
Assembler

• A pseudo-operation is one that is performed by the assembler at assembly 
time, not by the CPU at run time

• EQU defines a symbol to be equal to a constant. Substitution is made at 
assemble time

Pi EQU 3.14

• DS.B (.W or .L) defines a block of storage
• Any label is associated with the first word of the block

Line     DS.B    132
• The program loader (part of the operating system) accomplishes this 

 -more-
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Pseudo Operations in the MC68000 
Assembler (cont’d.)

• # symbol indicates the value of the symbol instead of a location 
addressed by the symbol

MOVE.L  #1000, D0 ;moves 1000 to D0

MOVE.L    1000, D0 ;moves value at addr. 1000 to D0
• The assembler detects the difference and assembles the appropriate 

instruction

• ORG specifies a memory address as the origin where the following 
code will be stored

Start ORG $4000 ;next instruction/data will be loaded at
 ;address 4000H.

• The Motorola assembler uses $ in front of a number to indicate 
hexadecimal

• Character constants are in single quotes: ‘X’
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Review of Assembly, Link, Load, and 
Run Times

• At assemble time, assembly language text is converted to (binary) 
machine language

• They may be generated by translating instructions, hexadecimal or decimal 
numbers, characters, etc.

• Addresses are translated by way of a symbol table
• Addresses are adjusted to allow for blocks of memory reserved for arrays, 

etc.

• At link time, separately assembled modules are combined and absolute 
addresses assigned

• At load time, the binary words are loaded into memory
• At run time, the PC is set to the starting address of the loaded module 

(usually the o.s. makes a jump or procedure call to that address)
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MC68000 Assembly Language Example: 
Clear a Block

• Subroutine expects block base in A0, count in D0
• Linkage uses the stack pointer, so A7 cannot be used for anything 

else

MAIN    …
   MOVE.L #ARRAY, A0 ;Base of array
   MOVE.W #COUNT, D0 ;Number of words to clear
   JSR CLEARW ;Make the call
   …

CLEARW    BRA LOOPE ;Branch for init. Decr.
LOOPS    CLR.W (A0)+ ;Autoincrement by 2 .
LOOPE    DBF D0, LOOPS ;Dec.D0,fall through if -1

   RTS ;Finished.
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Exceptions: Changes to Sequential 
Instruction Execution

• Exceptions, also called interrupts, cause next instruction fetch 
from other than PC location

• Address supplying next instruction called exception vector

• Exceptions can arise from instruction execution, hardware 
faults, and external conditions

• Externally generated exceptions usually called interrupts
• Arithmetic overflow, power failure, I/O operation completion, and 

out of range memory access are some causes

• A trace bit =1 causes an exception after every instruction
• Used for debugging purposes
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Steps in Handling MC68000 Exceptions

• (1) Status change
• Temporary copy of status register is made

• Supervisor mode bit S is set, trace bit T is reset

• (2) Exception vector address is obtained
• Small address made by shifting 8 bit vector number left 2

• Contents of the longword at this vector address is the address of the 
next instruction to be executed

• The exception handler or interrupt service routine starts there

• (3) Old PC and status register are pushed onto supervisor stack, 
addressed by A7' = SSP

• (4) PC is loaded from exception vector address 
• Return from handler is done by RTE

• Like RTR except restores status register instead of CCs
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Exception Priorities

• When several exceptions occur at once, which exception 
vector is used?

• Exceptions have priorities, and highest priority exception 
supplies the vector

• MC68000 allows 7 levels of priority
• Status register contains current priority
• Exceptions with priority ≤ current are ignored
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Exceptions and Reset Both Affect 
Instruction Interpretation

• More processor state needed to describe reset and exception 
processing

Reset: Reset input
exc_req: Single bit exception request
exc_lev〈2..0〉: Exception Level
vect〈7..0〉 : Vector address for this exception
exc := exc_req ∧  (exc_lev〈2..0〉 > INT〈2..0〉): There is a request, and the request

level is > current mask in status reg.

• exc_lev is the highest priority of any pending exception
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Exceptions Are Sensed Before Fetching 
Next Instruction

• Reset starts the computer with a stack pointer from location 
0 at the address from location 4

Instruction_interpretation := (
Run ∧  ¬(Reset ∨ exc) → (IR ← Mw[PC] : PC ← PC + 2);    Normal execution state
Reset → (INT〈2..0〉 ← 7 : S ← 1 : T ← 0:           Machine reset

SSP ← Ml[0] : PC ← Ml[4] :
Reset ← 0 : Run ← 1 );

Run ∧  ¬Reset ∧ exc → (SSP ← SSP - 4; Ml[SSP] ← PC;     Exception handling
SSP ← SSP - 2; Mw[SSP] ← Status;
S ← 1 : T ← 0 : INT〈2..0〉 ← exc_lev〈2..0〉 :
PC ← Ml[vect〈7..0〉#002] ); 

Instruction_execution ).
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Memory-Mapped I/O

• No separate I/O space. Part of cpu memory space is devoted/
reserved for I/O instead of RAM or ROM.

• Example: MC68000 has a total 24-bit address space. Suppose the 
top 32K is reserved for I/O:

FFFFFFH
 . . .
FF8000H
FF7FFFH

 . . .
000000H

}

} Memory Space

I/O Space

Notice that top 32K can be addressed by a negative 16-bit value.
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Memory-Mapped I/O in the MC68000

• Memory-mapped I/O allows µprocessor chip to have one bus 
for both memory and I/O

• Multiple wires for both address and data

• I/O uses address space that could otherwise contain memory
• Not popular with machines having limited address bits

• Sizes of I/O and memory “spaces” independent
• Many or few I/O devices may be installed
• Much or little memory may be installed

• Spaces are separated by putting I/O at top end of the address 
space
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Fig 3.8  A Memory-Mapped Keyboard 
Interface

MC68000 has a 24-bit address bus.

Address space runs from 000000H
up to FFFFFFH.

A 16-bit address constant can be
positive, and sign extend to an
address running from 000000H up
to the maximum positive value,
or negative, and sign extend to an
address running from FFFFFFH
down to the last negative 16-bit value.

I/O addresses in latter range can
be accessed by a 16-bit constant.

Keyboard interface

n

Memory
FF7FFFH


000000H

CPU

KBSTATUS

Character

available

KBDATA

Keyboard
"Q"

1FF8006H

FF8008H 00001101

n-bit system bus
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The SPARC (Scalable Processor 
ARChitecture) as a RISC Microprocessor 

Architecture

• The SPARC is a general register, load-store architecture
• It has only two addressing modes. Address = 

• (Reg + Reg) or (Reg + 31-bit constant)

• Instructions are all 32 bits in length
• SPARC has 69 basic instructions
• Separate floating-point register set

• First implementation had a 4-stage pipeline
• Some important features not inherently RISC

• Register windows: Separate but overlapping register sets 
available to calling and called routines

• 32-bit address, big-endian organization of memory
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Fig 3.9   
Simplified 
SPARC 
Processor 
State
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Fig 3.10   SPARC Register Windows 
Mechanism
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SPARC Memory

RTN for the SPARC memory:
Mb[0..232-1]〈7..0〉: Byte memory
Mh[a] 〈15..0〉 := Mb[a] 〈7..0〉#Mb[a + 1] 〈7..0〉: Halfword memory
M[a] 〈31..0〉 := Mh[a] 〈15..0〉#Mh[a + 2] 〈15..0〉: Word memory
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Register Windows Format the General 
Registers

• 32 general integer and address registers are accessible at any one 
time

• Global registers G0..G7 are not in any window

• G0 is always zero: writes to G0 are ignored, reads return  0
• The other 24 are in a movable window from a total set of 120

• On subroutine call, the starting point changes so that 24–31 
before call become 8–15 after

• Registers 8–15 are used for incoming parameters
• Registers 24–31 are for outgoing parameters
• Current Window Pointer CWP locates register 8

• Overflow of register space causes trap
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save, restore, and the Current Window 
Pointer

• CWP points to the register currently called G8
• save moves it to point of the old G24

• This makes the old G24..G31 into the new G8..G15

• If parameters are placed in G24..G31 by the caller, the callee can 
get them from G8..G15

• When all windows are used, save traps to a routine that saves 
registers to memory

• Windows wrap around in the available registers
• Window overflow “spills” the first window and reuses its space
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SPARC Operand Addressing

• One mode computes address as sum of 2 registers; G0 gives 
zero if used

• The other mode adds sign-extended 13-bit constant to a 
register

• These can serve several purposes
• Indexed: base in one register, index in another
• Register indirect: G0 + Gn

• Displacement: Gn + const, n ≠ 0
• Absolute: G0 + constant

• Absolute addressing can only reach the bottom or top 4K 
bytes of memory
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RTN for SPARC Instruction Format

op〈1..0〉 := IR〈31..30〉: Instruction class, op code for format 1;
disp30〈29..0〉 := IR〈29..0〉: Word displacement for call, format 1;
a := IR〈29〉: Annul bit for branches, format 2a;
cond〈3..0〉 := IR〈28..25〉: Branch condition select, format 2a;
rd〈4..0〉 := IR〈29..25〉: Destination register for formats 2b & 3;
op2〈2..0〉 := IR〈24..22〉: Op code for format 2;
disp22〈21..0〉 := IR〈21..0〉: Constant for branch displacement or sethi;
op3〈5..0〉 := IR〈24..19〉: Op code for format 3;
rs1〈4..0〉 := IR〈18..14〉: Source register 1 for format 3;
opf〈8..0〉 := IR〈13..5〉: Sub-op code for floating point, format 3a;
i := IR〈13〉: Immediate operand indicator, formats 3b & c;
simm13〈12..0〉 := IR〈12..0〉: Signed immediate operand for format 3c;
rs2〈4..0〉 := IR〈4..0〉: Source register 2 for format 3b.
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Fig 3.11   SPARC Instruction Formats

• Three basic formats with variations

SPARC instruction formatsFormat number

rs2op rd op3 rs1

31

3a. Floating point

3b. Data movement

3c. ALU

30 29 25 24 19 18 14 13 12 5 4 0

i (register or immediate)

opf

op rd op3 rs1 1 simm13

op rd op3 rs1 0 asi rs2

0 0 a cond op2 disp22

0 0 rd op2 disp22

31
2a. Branches

2b. sethi

30 29 28 2425 22 21 0

0 1 disp30

31

1. Call

30 29 0
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RTN For SPARC Addressing Modes

adr〈31..0〉 := (i=0 → r[rs1] + r[rs2]: Address for load, store,
i=1 → r[rs1] + simm13〈12..0〉 {sign ext.}): and jump

calladr〈31..0〉 := PC〈31..0〉 + disp30〈29..0〉 #002: Call relative address
bradr〈31..0〉 := PC〈31..0〉 + disp22〈21..0〉 #002{sign ext.}: Branch address
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RTN For SPARC Instruction 
Interpretation

instruction_interpretation := (IR ← M[PC]; instruction_execution;
update_PC_and_nPC; instruction_interpretation):
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Tbl 3.8   SPARC Data Movement 
Instructions

Inst. Op. OPCODE Meaning
ldsb 11 00 1001 Load signed byte
ldsh 11 00 1010 Load signed halfword
ldsw 11 00 1000 Load signed word
ldub 11 00 0001 Load unsigned byte
lduh 11 00 0010 Load unsigned halfword
ldd 11 00 0011 Load doubleword
stb 11 00 0101 Store byte
sth 11 00 0110 Store halfword
stw 11 00 0100 Store word
std 11 00 0111 Store double word
swap 11 00 1111 Swap register with memory
or 10 00 0010 r[d] ← r[s1] OR (r[rs2] or immediate)
sethi 00 Op2=100 High order 22 bits of Rdst ← disp22
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Register and Immediate Moves in the 
SPARC

• OR is used with a G0 operand to do register-to-register moves
• To load a register with a 32-bit constant, a 2-instruction sequence 

is used
SETHI  R17, #upper22
OR       R17, R17, #lower10

• Doublewords are loaded into an even register and the next higher 
odd one

• Floating-point instructions are not covered, but the 32 FP registers 
can hold single-length numbers, or 16 64-bit FP, or 8 128-bit FP 
numbers
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Tbl 3.9  SPARC Arithmetic Instructions

• All are format 3, Op = 10
• CCs are set if S = 1 and not if S = 0

• Both register and immediate forms are available
• Multiply is done by software using MULSCC or using floating-

point instructions
• Multiply is hard to do in one clock but multiply step is not

Inst. Op. OPCODE Meaning
add 10 0S 0000 Add or add and set condition codes
addx 10 0S 1000 Add with carry: set CCs or not
sub 10 0S 0100 Subtract: subtract and set CCs or not
subx 10 0S 1100 Subtract with borrow: set CCs or not
mulscc 10 10 1100 Do one step of multiply
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Tbl 3.10   SPARC Logical and Shift 
Instructions

• All instructions use format 3 with op = 10
• Both register and immediate forms are available

• Condition codes set if S = 1 and undisturbed if S = 0

Inst. Op. OPCODE Meaning
AND 10 0S 0001 AND, set CCs if S=1 or not if S=0
ANDN 10 0S 0101 NAND, set CCs or not
OR 10 0S 0010 OR, set CCs or not
ORN 10 0S 0110 NOR, set CCs or not
XOR 10 0S 0011 XNOR(Equiv), set CCs or not
SLL 10 10 0101 Shift left logical, count in RSRC2 or imm13
SRL 10 10 0110 Shift right logical, count in RSRC2 or imm13
SRA 10 10 0111 Shift right arithmetic, count as above
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Tbl 3.11  SPARC  Branch and Control 
Transfer Instructions

Inst. Format Op Op2 or Op3 Meaning   
ba 2 00 010 Unconditional branch
bcc 2 00 010 Conditional branch
call 1 01 Call & save PC in R15
jmpl 3 10 11 1000 Jmp to EA, save PC in Rdst
save 3 10 11 1100 New register window, & ADD
restore 3 10 11 1101 Restore reg. window, & ADD

Some condition fields:
Inst. COND Inst. COND Inst. COND Inst. COND
ba 1000 bne 1001 be 0001 ble 0010
bcc 1101 bcs 0101 bneg 0110 bvc 1111
bvs 0111
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Fig 3.12  Example SPARC Assembly Program

.begin

.org
prog: ld [x], %r1 ! Load a word from M[x] into register %r1.

ld [y], %r2 ! Load a word from M[y] into register %r2.

addcc%r1, %r2, %r3 ! %r3 ← %r1 + %r2  ; set CCs.

st %r3, [z] ! Store sum into M[z].

jmpl %r15, +8, %r0 ! Return to caller.
nop ! Branch delay slot.

x: 15 ! Reserve storage for x, y, and z.

y: 9
z: 0

.end

Note different syntax for SPARC. 
Note r15 contains return address—placed there by the OS in this case.



3-73 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan   © 1997 V. Heuring and H. Jordan

Fig 3.13  Example of Subroutine Linkage 
in the SPARC

.begin

.org
prog: ld [x], %o0 !Pass parameters in

ld [y], %o1 !   first 3 output registers.
call add3 !Call subroutine to put result in %o0.
mov -17, %o2 !Set last parameter in delay slot
st %o0, [z] !Store returned result.
...

x: 15
y: 9
z: 0
add3: save %sp,-(16*4),%sp !Get new window and adjust stack pointer.

add %i0, %i1, %l0 !Add parameters that now appear in
add %l0, %i3, %l0 !   input registers using a local.
ret !Return. Short for jmp %i7+8.
restore %l0, 0, %o0 !Result moved to caller’s %o0.
.end
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Pipelining of the SPARC Architecture

• Many aspects of the SPARC design are in support of a pipelined 
implementation

• Simple addressing modes, simple instructions, delayed branches, load-store 
architecture

• Simplest form of pipelining is fetch-execute overlap—fetching next 
instruction while executing current instruction

• Pipelining breaks instruction processing into steps
• A step of one instruction overlaps different steps for others

• A new instruction is started (issued) before previously issued instructions 
are complete

• Instructions guaranteed to complete in order
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Fig 3.14  The SPARC MB86900 Pipeline

• 4 pipeline stages are Fetch, Decode, Execute, and Write
• Results are written to registers in Write stage

Fetch Dec. Exec. WriteInstr. 1

Fetch Dec. Exec. Write

Fetch Dec. Exec. Write

Fetch Dec. Exec. Write

Instr. 2

Instr. 3

Instr. 4

1 2 3 4 5 6 7

Clock Cycle
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Pipeline Hazards

• Will be discussed later, but main issue is:
• Branch or jump change the PC as late as Exec or Write, but 

next instruction has already been fetched
• One solution is delayed branch
• One (maybe 2) instruction following branch is always executed, 

regardless of whether branch is taken

• SPARC has a delayed branch with one delay slot, but also allows 
the delay slot instruction to be annulled (have no effect on the 
machine state) if the branch is not taken

• Registers to be written by one instruction may be needed by 
another already in the pipeline, before the update has happened 
(data hazard)
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CISC versus RISC: Recap

• CISCs supply powerful instructions tailored to commonly 
used operations, stack operations, subroutine linkage, etc.

• RISCs require more instructions to do the same job

• CISC instructions take varying lengths of time
• RISC instructions can all be executed in the same few-cycle 

pipeline
• RISCs should be able to finish (nearly) one instruction per 

clock cycle
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Key Concepts: RISC versus CISC

• While a RISC machine may possibly have fewer instructions 
than a CISC, the instructions are always simpler. Multistep 
arithmetic operations are confined to special units.

• Like all RISCs, the SPARC is a load-store machine. Arithmetic 
operates only on values in registers.

• A few regular instruction formats and limited addressing modes 
make instruction decode and operand determination fast.

• Branch delays are quite typical of RISC machines and arise from 
the way a pipeline processes branch instructions.

• The SPARC does not have a load delay, which some RISCs do, 
and does have register windows, which many RISCs do not.
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Chapter 3 Summary

• Machine price/performance are the driving forces.
• Performance can be measured in many ways: MIPS, execution 

time, Whetstone, Dhrystone, SPEC benchmarks.

• CISC machines have fewer instructions that do more.
• Instruction word length may vary widely
• Addressing modes encourage memory traffic

• CISC instructions are hard to map onto modern architectures

• RISC machines usually have
• One word per instruction

• Load/store memory access
• Simple instructions and addressing modes
• Result in allowing higher clock cycles, prefetching, etc.


