
3-1 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Chapter 3: Some Real Machines

Topics

3.1 Machine Characteristics and Performance
3.2 RISC versus CISC

3.3 A CISC Microprocessor: The Motorola MC68000
3.4 A RISC Architecture: The SPARC

3-2 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Practical Aspects of Machine Cost-
Effectiveness

• Cost for useful work is fundamental issue
• Mounting, case, keyboard, etc. are dominating the cost of

integrated circuits

• Upward compatibility preserves software investment
• Binary compatibility
• Source compatibility

• Emulation compatibility

• Performance: strong function of application

3-3 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Performance Measures

• MIPS: Millions of Instructions Per Second
• Same job may take more instructions on one machine than on

another

• MFLOPS: Million Floating Point OPs Per Second
• Other instructions counted as overhead for the floating point

• Whetstones: Synthetic benchmark
• A program made up to test specific performance features

• Dhrystones: Synthetic competitor for Whetstone
• Made up to “correct” Whetstone’s emphasis on floating point

• SPEC: Selection of “real” programs
• Taken from the C/Unix world

3-4 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

CISC Versus RISC Designs

• CISC: Complex Instruction Set Computer
• Many complex instructions and addressing modes
• Some instructions take many steps to execute
• Not always easy to find best instruction for a task

• RISC: Reduced Instruction Set Computer
• Few, simple instructions, addressing modes
• Usually one word per instruction

• May take several instructions to accomplish what CISC can do in one
• Complex address calculations may take several instructions
• Usually has load-store, general register ISA

3-5 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Design Characteristics of RISCs

• Simple instructions can be done in few clocks
• Simplicity may even allow a shorter clock period

• A pipelined design can allow an instruction to complete in every
clock period

• Fixed length instructions simplify fetch and decode
• The rules may allow starting next instruction without necessary

results of the previous
• Unconditionally executing the instruction after a branch
• Starting next instruction before register load is complete

3-6 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Other RISC Characteristics

• Prefetching of instructions. (Similar to I8086.)
• Pipelining: beginning execution of an instruction before the previous

instruction(s) have completed. (Will cover in detail in Chapter 5.)

• Superscalar operation—issuing more than one instruction simultaneously.
(Instruction-level parallelism. Also covered in Chapter 5.)

• Delayed loads, stores, and branches. Operands may not be available when
an instruction attempts to access them.

• Register windows—ability to switch to a different set of CPU registers with
a single command. Alleviates procedure call/return overhead. Discussed
with SPARC in this chapter.

3-7 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Tbl 3.1 Order of Presenting or
Developing a Computer ISA

• Memories: structure of data storage in the computer
• Processor-state registers

• Main memory organization

• Formats and their interpretation: meanings of register fields
• Data types

• Instruction format
• Instruction address interpretation

• Instruction interpretation: things done for all instructions
• The fetch-execute cycle
• Exception handling (sometimes deferred)

• Instruction execution: behavior of individual instructions
• Grouping of instructions into classes

• Actions performed by individual instructions

3-8 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

CISC: The Motorola MC68000

• Introduced in 1979
• One of first 32-bit microprocessors

• Means that most operations are on 32-bit internal data
• Some operations may use different number of bits
• External data paths may not all be 32 bits wide

• MC68000 had a 24-bit address bus

• Complex Instruction Set Computer—CISC
• Large instruction set

• 14 addressing modes

3-9 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 3.1 The MC68000 Processor State

1531 016 7
D0

D7

I
2

ST

15 13 10 9 8 4 3 2 1 0

I
1

I
0

X N Z V C

8

0

223 – 1

1531 016

1931 023

A0

Status

CC

System

byte

User

byte

Trace mode

Supervisor state

Interrupt mask

Extend

Negative

Zero

Overflow

Carry

A7/SP/USP

A6

A7'/SSP

PC
15 0

IR

8 general

purpose data

registers

224 bytes, or

223 16-bit words, or

222 longwords of

main memory

8 address

registers

3-10 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Features of the 68000 Processor State

• Distinction between 32-bit data registers and 32-bit address
registers

• 16-bit instruction register
• Variable length instructions handled 16 bits at a time

• Stack pointer registers
• User stack pointer is one of the address registers

• System stack pointer is a separate single register
• Discuss: Why a separate system stack

• Condition code register: System and user bytes
• Arithmetic status (N, Z, V, C, X) is in user status byte
• System status has supervisor and trace mode flags, as well as the

interrupt mask

3-11 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTN Processor State for the MC68000

D[0..7]〈31..0〉: General purpose data registers
A[0..7]〈31..0〉: Address registers
A7´〈31..0〉: System stack pointer
PC〈31..0〉: Program counter
IR〈15..0〉: Instruction register
Status〈15..0〉: System status byte and user status byte
SP := A[7]: User stack pointer, also called USP
SSP := A7´: System stack pointer
C := Status〈0〉: V := Status〈1〉: Carry and Overflow flags
Z := Status〈2〉: N := Status 〈3〉: Zero and Negative flags
X := Status〈4〉: Extend flag
INT〈2..0〉 := Status 〈10..8〉: Interrupt mask in system status byte
S := Status〈13〉: T := Status 〈15〉:Supervisor state and Trace mode flags

3-12 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Main Memory in the MC68000

• The word and longword forms are “big-endian”
• The lowest numbered byte contains the most significant bit (big end)

of the word

• Words and longwords have “hard” alignment constraints not
described in the above RTN

• Word addresses must end in one binary 0

• Longword addresses must end in two binary zeros

Main memory:
Mb[0..224-1]〈7..0〉: Memory as bytes
Mw[ad]〈15..0〉 := Mb[ad]#Mb[ad+1]: Memory as words
Ml[ad]〈31..0〉 := Mw[ad]#Mw[ad+2]: Memory as long words

3-13 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

MC68000 Supports Several Operand
Types

• Like many CISC machines, the 68000 allows one instruction
to operate on several types

• MOVE.B for bytes, MOVE.W for words, and MOVE.L for
longwords; also ADD.B, ADD.W, ADD.L, etc.

• Operand length is coded as bits of the instruction word

• Bits coding operand type vary with instruction
• For use with RTN descriptions, we assume a function

d := datalen(IR) that returns 1, 2, or 4 for operand length

3-14 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 3.2 Some MC68000 Instruction
Formats

(a) A 1-word move instruction (b) A 2-word instruction

(c) A 3-word instruction

IR

IR

Extra word
Extra word

IR

Extra word

(d) Instruction with indexed address

IR

Extra word

op

15 0

15 0

15 0

15 0

rg2

md1

16-bit constant
16-bit constant

md2 md1 rg1

rg1

md1

16-bit constant

rg1

110

d/a Index reg w/l 000 disp8

Reg

3-15 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

General Form of Addressing Modes
in the MC68000

• A general address of an operand or result is
specified by a 6-bit field with mode and
register numbers

• Not all operands and results can be specified
by a general address: some must be in
registers

• Not all modes are legal in all parts of an
instruction

5 4 3 2 1 0

mode reg

Provides access paths to operands

3-16 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Tbl 3.2 MC68000 Addressing Modes

Name Mode Reg. Assembler Extra Brief description
 Words

5 4 3 2 1 0

mode reg

Data reg. direct 0 0-7 Dn 0 Dn
Addr. reg. direct 1 0-7 An 0 An
Addr. reg. indirect 2 0-7 (An) 0 M[An]
Autoincrement 3 0-7 (An)+ 0 M[An];An←An+d
Autodecrement 4 0-7 -(An) 0 An←An-d;M[An]
Based 5 0-7 disp16(An) 1 M[An+disp16]
Based indexed short 6 0-7 disp8(An,XnLo) 1 M[An+XnLo+disp8]
Based indexed long 6 0-7 disp8(An,Xn) 1 M[An+Xn+disp8]
Absolute short 7 0 addr16 1 M[addr16]
Absolute long 7 1 addr32 2 M[addr32]
Relative 7 2 disp16(PC) 1 M[PC+disp16]
Rel. indexed short 7 3 disp8(PC,XnLo) 1 M[PC+XnLo+disp8]
Rel. indexed long 7 3 disp8(PC,Xn) 1 M[PC+Xn+disp8]
Immediate 7 4 #data 1-2 data

3-17 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTN Description of MC68000
Addressing

• The addressing modes interpret many items
• The instruction: in the IR register

• The following 16-bit word: described as Mw[PC]
• The D and A registers in the CPU

• Many addressing modes calculate an effective memory
address

• Some modes designate a register
• Some modes result in a constant operand
• There are restrictions on the use of some modes

5 4 3 2 1 0

mode reg

3-18 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTN Formatting for Effective Address
Calculation

• Either an A or a D register can be used as an index

• A 4-bit field in the 2nd instruction word specifies the index register
• Low order 8-bits of 2nd word are used as offset
• Either 16 or 32 bits of index register may be used

XR[0..15]〈31..0〉 :=
D[0..7]〈31..0〉 # A[0..7]〈31..0〉: Index register can be D or A;

xr〈3..0〉 := Mw[PC]〈15..12〉: Index specifier for index mode;
wl := Mw[PC]〈11〉: Short or long index flag;
dsp8〈7..0〉 := Mw[PC]〈7..0〉: Displacement for index mode;
index := ((wl=0) → XR[xr]〈15..0〉: Short or

 (w1=1) → XR[xr]〈31..0〉): long index value;

disp8 = ldispd/a Index reg w/l 0 0 0

0: index is in data register
1: index is in address register

0 = 16 bit index
1 = 32 bit index

15 14 13 12 11 10 9 8 7 0

3-19 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Modes That Calculate a
Memory Address Using a

Register
• md and rg are the 3-bit mode and

register fields
• ea stands for effective address

ea(md, rg) := (
 (md = 2) → A[rg 〈2..0〉]: Mode 2 is

 A register indirect;
 (md = 3) → Mode 3 is

(A[rg〈2..0〉]; A[rg〈2..0 〉] ← A[rg〈2..0〉] + d): autoincrement;
 (md = 4) → Mode 4 is

(A[rg〈2..0〉] ← A[rg〈2..0〉] - d; A[rg〈2..0 〉]): autodecrement;
 (md = 5) → Mode 5 is based

(A[rg〈2..0〉] + Mw[PC]; PC ← PC + 2): or offset addressing;
 (md = 6) → Mode 6 is based

(A[rg〈2..0〉] + index + dsp8; PC ← PC + 2): indexed addressing;

5 4 3 2 1 0

mode reg

5 4 3 2 1 0

010 - 110 000 - 111

3-20 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Mode 7 Uses the Register
Field to Expand the
Number of Modes

• These modes still calculate a memory address

ea (md, rg) :=
 . . .
(md = 7 ∧ rg = 0) → Mode 7, register 0 is
 (Mw[PC]{sign extend to 32 bits}; PC ← PC + 2): short absolute;
(md = 7 ∧ rg = 1) → Mode 7, register 1 is
 (Ml[PC]; PC ← PC + 4): long absolute;
(md = 7 ∧ rg = 2) → Mode 7, register 2 is
 (PC + Mw[PC]{sign extend to 32 bits}; program counter

PC ← PC + 2): relative
addressing;
(md = 7 ∧ rg = 3) → Mode 7, register 3 is
 (PC + index + dsp8; PC ← PC + 2)): relative indexed.

5 4 3 2 1 0

1 1 1 reg

3-21 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 3.3 Address
Register Indirect

Addressing

• Same picture for autoincrement or decrement
• Address register incremented after address obtained in

autoincrement

• Address register decremented before address obtained in
autodecrement

Address regist er indirect

01 0 Reg

68000
Regist ers

A0

...

A7

. . .

Operand

Main
memory

Address

Ex: MOVE (A6), ...

5 4 3 2 1 0

0 1 0 reg

3-22 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 3.4 Mode 6: Based
Indexed Addressing

• Three things are added to get the address

Mode 6: Based indexed addressing

110 Reg

68000
Regist ers

A0

...

A7

. . .

Operand

Main
memory

Base address

Ex: MOVE.W LDISP (A6, D4), ...

+

disp8 = ldispd/a Index reg w/l 0 0 0

•
•
•

•
•
•

D0-D7
A0-A7

Index (16 or 32)

0: index is in data reg.
1: index is in address reg.

0 = 16 bit index
1 = 32 bit index

15 14 13 12 11 10 9 8 7 0

5 4 3 2 1 0

1 1 0 reg

3-23 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Mode 7-0,1: Absolute
Addressing

• Absolute addresses can be 16 or 32 bits

Absolut e short addressing

11 1 0 00. . .

Operand

Main
memory

Ex: MOVE.B PRINTERPORT.W, ...
15 0

addr16
(Sign extend to 32-bits)

Absolut e long addressing

1 11 001. . .

15 0

addr32Hi

addr32Lo
Concat.

Ex: MOVE.W INTVECT.L, ...

5 4 3 2 1 0

1 1 1 000 (16-bit)
001 (32-bit)

3-24 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Mode 7, Reg 3: Relative
Indexed Addressing

• Same as indexed mode but uses PC instead of A register as
base

5 4 3 2 1 0

1 1 1 0 1 1

Relative indexed addressing

111 011

Program count er

. . .

Operand

Main
memory

Ex: MOVE.W LDISP (PC, D4), ...

+

disp8 = ldispd/a Index reg w/l 0 0 0

D0-D7
A0-A7

Index (16 or 32)

0: index is in data reg.
1: index is in address reg.

0 = 16 bit index
1 = 32 bit index

15 14 13 12 11 10 9 8 7 0

3-25 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

memval(md, rg) := A memory address is
 ((md〈2..1〉 = 1) ∨ (md〈2..1〉 = 2) ∨ (md〈2..0〉 = 6) ∨ used with these
 ((md〈2..0〉 = 7) ∧ (rg〈2〉 =0))): modes only.
opnd(md, rg) := (The operand length in
 (d=1) → opndb(md, rg): (d=2) → opndw(md, rg): the instruction tells
 (d=4) → opndl(md, rg)): which to use.
opndl(md, rg)〈31..0〉 := (A long operand can be
 . . .): . . .
opndw(md, rg)〈15..0〉 := (A word operand is
 memval(md, rg) → Mw[ea(md, rg)]〈15..0〉: similar but needs only
 md =0 → D[rg]〈15..0〉: a 16-bit immediate
 md = 1 → A[rg]〈15..0〉: following the
 (md = 7 ∧ rg = 4) → (Mw[PC]〈15..0〉: PC ← PC+2)): instruction word.
opndb(md, rg)〈7..0〉 := (Byte operands

 (md = 7 ∧ rg = 4) → (Mw[PC]〈7..0〉: PC ← PC+2)): instruction word.

Operands in Registers or Memory Can
Have Different Lengths

3-26 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Modes 0 and 1: Register
Direct Addressing

• The register itself provides a place to store a result or a place
to get an operand

• There is no memory address with this mode

5 4 3 2 1 0

0 0 0 (D)
0 0 1 (A)

reg

D0
0 00 Reg

...

D7

A0

...

A7

. . . 0 01 Reg. . .

Ex: MOVE D6, ... Ex: MOVE A6, ...

Data register direct

Data
registers Address register direct

Address
registers

OperandOperand

3-27 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 3.5 Mode 7, Reg 4:
Immediate Addressing
Operands are stored

in the instruction

• Data length is specified by the opcode field, not the Mode/Reg
field

1 11 10 0. . .

15 0

value16Hi

value16Lo

Ex: MOVE.W #1234, ...

11 1 100. . .

15 0

value16

Ex: MOVE.L #12348678, ...

Word Longword

1 11 10 0. . .

15 8 7 0

value8

Byt e

00000000

Ex: MOVE.B #12, ...

Instruction word and 1 or 2 following words

5 4 3 2 1 0

1 1 1 1 0 0

3-28 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Not Every Addressing Mode Can Be
Used for Results

• The MC68000 disallows relative addressing for results
• This is captured in RTN by defining a function that is true (=

1) if the memory address specified by the mode is legal for
results

• Register immediate is also legal for results, but will be
handled separately

rsltadr(md, rg) := memval(md, rg) ∧ ¬(md=7 ∧ (rg=2∨ rg=3)):

3-29 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Result Modes Must Have a Place to Write
Data: Memory or Register

rsltl(md, rg)〈31..0〉 := (32-bit result
 rsltadr(md, rg) → Ml[ea(md, rg)]〈31..0〉:
 md = 0 → D[rg]〈31..0〉:
 md = 1 → A[rg]〈31..0〉):
rsltw(md, rg)〈15..0〉 := (16-bit result
 rsltadr(md, rg) → Mw[ea(md, rg)]〈15..0〉:
 md = 0 → D[rg]〈15..0〉:
 md = 1 → A[rg]〈15..0〉):
rsltb(md, rg)〈7..0〉 := (8-bit result
 rsltadr(md, rg) → Mb[ea(md, rg)]〈7..0〉:
 md = 0 → D[rg]〈7..0〉:
 md = 1 → A[rg]〈7..0〉):
rslt(md, rg) := (The result length in the
 (d=1) → rsltb(md, rg): (d=2) → rsltw(md, rg): instruction tells
 (d=4) → rsltl(md, rg)): which to use

3-30 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

MC68000 Instruction Interpretation

• Instruction interpretation is simple when exceptions are
ignored

• Instructions are fetched 16 bits at a time
• PC is advanced by 2 as each 16-bit word is fetched
• Addressing mode may advance it a total of 2 or 4 or

more words, under command from the control unit

Instruction_interpretation := (
Run → ((IR〈15..0〉 ← Mw[PC]〈15..0〉: PC ← PC + 2);

instruction_execution);):

3-31 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Tbl 3.3 MC68000 Data Movement
Instructions

• The op code location and size depends on the instruction
(compare to SRC)

Inst. Operands 1st word XNZVC Operation Size

MOVE.B EAs, EAd 0001ddddddssssss - x x 0 0 dst ← src byte
MOVE.W EAs, EAd 0011ddddddssssss - x x 0 0 dst ← src word
MOVE.L EAs, EAd 0010ddddddssssss - x x 0 0 dst ← src long
MOVEA.W EAs, An 0011rrr001ssssss - - - - - An ← src word
MOVEA.L EAs, An 0010rrr001ssssss - - - - - An ← src long
LEA.L EAc, An 0100aaa111ssssss - - - - - An ← EA addr.
EXG Dx, Dy 1100xxx1mmmmmyyy - - - - - Dx ↔ Dy long

3-32 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTN for a Typical MC68000 Move
Instruction

• The temporary register tmp is used because every invocation of
opnd() causes another fetch

tmp〈31..0〉:
move (:= op〈3..2〉 := 0) → (

tmp ← opnd(md1, rg1);
(Z ← (tmp=0): N ← (tmp<0): V ← 0: C ← 0):
rslt(md2, rg2) ← tmp):

• The instruction format for Move includes mode and
register for source and destination addresses
op〈3..0〉 := IR〈15..12〉: rg1〈2..0〉 := IR〈2..0〉: md1〈2..0〉 := IR〈5..3〉:
rg2〈2..0〉 := IR〈11..9〉: md2〈2..0〉 := IR〈8..6〉:

3-33 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Tbl 3.4 MC68000 Integer Arithmetic and
Logic Instructions

Op. Operands Inst. word XNZVC Operation Sizes

ADD EA,Dn 1101rrrmmmaaaaaa x x x x x dst ← dst + src b, w, l

SUB EA,Dn 1001rrrmmmaaaaaa x x x x x dst ← dst - srC b, w, l

CMP EA,Dn 1011rrrmmmaaaaaa - x x x x dst-src b, w, l

CMPI #dat,EA 00001100wwaaaaaa - x x x x dst-immed.data b, w, l

MULS EA, Dn 1100rrr111aaaaaa - x x 0 0 Dn←Dn*src l←w*w

DIVS EA,Dn 1000rrr111aaaaaa - x x x 0 Dn←Dn/src l←l/w

AND EA,Dn 1100rrrmmmaaaaaa - x x 0 0 dst←dst∧ src b, w, l

OR EA,Dn 1000rrrmmmaaaaaa - x x 0 0 dst←dst∨ src b, w, l

EOR EA,Dn 1011rrrmmmaaaaaa - x x 0 0 dst←dst⊕ src b, w, l

CLR EAs 01000010wwaaaaaa - 0 1 0 0 dst∧ dst b, w, l

NEG EAs 01000100wwaaaaaa - x x x x dst←0 - dst b, w, l

TST EAs 01001010wwaaaaaa - x x 0 0 dst−0 b, w, l

NOT EAs 01000110wwaaaaaa - x x x x dst← ¬dst b, w, l

3-34 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Notes on MC68000 Arithmetic and Logic
Instructions

• Only one operand uses EA
• The other operand is always accessed by Data register direct
• The 3-bit mmm field specifies whether D is the source or destination,

and whether it is B, W, or L
Byte Word Long Destination
000 001 010 Dn

100 101 110 EA

Ex: SUB EA, Dn: 1011 rrr mmm aaaaaa

Note: There are several exceptions to the rule above. See text and mfr. data sheet.

All 2-operand ALU instructions are either D → EA or EA → D. Which is it?

 op Dn tbl abv. EA

3-35 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTN Description of a Typical MC68000
Arithmetic Instruction

• This definition does not handle the condition codes

• Subtract is a typical arithmetic instruction
• Need a temporary register to hold an address

tmp〈31..0〉: temporary register for address

sub (:= op=9) → (
(md2〈2〉 =0) → D[rg2] ← D[rg2] - opnd(md1, rg1):
(md2〈2〉 =1) → (memval(md1, rg1) → (tmp ← ea(md1, rg1);

 M[tmp] ← M[tmp] - D[rg2]):
 ¬memval(md1, rg1) → rslt(md1, rg1) ← rslt(md1, rg1) - D[rg2])

):

3-36 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

MC68000 Arithmetic Shifts and Single
Word Rotates

• d is L or R for left or right shift, respectively
• EA form has shift count of 1

c
x

0

c
x

ASL

ASR
Dn

c

ROL

ROR

c

Dn

Op. Operands Inst. word XV

ASd EA 1110000d11aaaaaa x x
ASd #cnt,Dn 1110cccdww000rrr x x
ASd Dm,Dn 1110RRRdww100rrr x x

ROd EA 1110011d11aaaaaa - 0
ROd #cnt,Dn 1110cccdww011rrr - 0
ROd Dm,Dn 1110RRRdww111rrr - 0

3-37 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

MC68000 Logical Shifts and Extended
Rotates

• Field ww specifies byte, word, or longword
• N and Z set according to result, C = last bit shifted out

c
x

0

c
x

0

LSL

LSR
Dn

x
c

x
c

ROXR

ROXL

Dn

Op. Operands Inst. word XV

LSd EA 1110001d11aaaaaa x 0
LSd #cnt,Dn 1110cccdww001rrr x 0
LSd Dm,Dn 1110RRRdww101rrr x 0

ROXd EA 1110010d11aaaaaa x 0
ROXd #cnt,Dn 1110cccdww010rrr x 0
ROXd Dm,Dn 1110RRRdww110rrr x 0

3-38 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

MC68000 Conditional Branch and Test
Instructions

• DBcc is used for counted loops with an optional end condition
• Scc sets a byte to the outcome of a test

Op. Operands Inst. word Operation

Bcc disp 0110ccccdddddddd if (cond) then
 DDDDDDDDDDDDDDDD PC ← PC + disp

DBcc Dn,disp 0101cccc11001rrr if ¬(cond) then Dn←Dn-1

 if (Dn≠-1) then PC←PC+disp)
 else PC ← PC + 2

Scc EA 0101cccc11aaaaaa if (cond) then (EA) ← FFH

else (EA) ← 00H

3-39 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Conditions That Can Be Evaluated for
Branch, Etc.

Code Meaning Name Flag expression

0000 true T 1
0001 false F 0
0100 carry clear CC C
0101 carry set CS C
0111 equal EQ Z
0110 not equal NE Z
1011 minus MI N
1010 plus PL N
0011 low or same LS C+Z
1101 less than LT N·V+N·V
1100 greater or equal GE N·V+N·V
1110 greater than GT N·V·Z+N·V·Z
1111 less or equal LE N·V+N·V+Z
0010 high HI C·Z
1000 overflow clear VC V
1001 overflow set VS V

3-40 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Conditional Branches First Set Condition
Codes, Then Branch

• EQ tests the right condition codes for = 0, as above, or A = B
following a compare, CMP A, B

if (X = 0) goto LOC

TST X ;ands X with itself and sets N and Z
BEQ LOC ;branch to LOC if X = 0
.
.
.

LOC:

3-41 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

MC68000 Unconditional Control
Transfers

• Subroutine links push the return address onto the stack
pointed to by A7 = SP

Op. Operands Inst. word Operation

BRA disp 01100000dddddddd PC ← PC + disp
 DDDDDDDDDDDDDDDD

BSR disp 01100001dddddddd -(SP) ← PC; PC ← PC + disp
 DDDDDDDDDDDDDDDD

JMP EA 0100111011aaaaaa PC ← EA

JSR EA 0100111010aaaaaa -(SP) ← PC; PC ← EA

3-42 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

MC68000 Subroutine Return Instructions

• Subroutine linkage uses stack for return address
• LINK and UNLK allocate and de-allocate multiple word stack

frames

Op. Operands Inst. word Operation

RTR 0100111001110111 CC ← (SP)+; PC ← (SP)+

RTS 0100111001110101 PC ← (SP)+

LINK An,disp 0100111001010rrr -(SP) ← An; An ← SP;

DDDDDDDDDDDDDDDD SP ← SP + disp

UNLK An 0100111001011rrr SP ← An; An ← (SP)+

3-43 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

MC68000 Assembly Code Example:
Search an Array

• Program searches an array of bytes to find the first carriage
return, ASCII code 13

CR EQU 13 ;Define return character.
LEN EQU 132 ;Define line length.
 ORG $1000 ;Locate LINE at 1000H.
LINE DS.B LEN ;Reserve LEN bytes of storage.
 MOVE.B #LEN-1,D0 ;Initialize D0 to count-1.
 MOVEA.L #LINE,A0 ;A0 gets start address of array.
LOOP CMPI.B (A0)+,#CR ;Make the comparison.
 DBEQ D0,LOOP ;Double test: if LINE[131-D0]≠13
 <next instruction> ; then decr. D0; if D0≠-1 branch
 ; to LOOP, else to next inst.

3-44 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Pseudo-Operations in the MC68000
Assembler

• A pseudo-operation is one that is performed by the assembler at assembly
time, not by the CPU at run time

• EQU defines a symbol to be equal to a constant. Substitution is made at
assemble time

Pi EQU 3.14

• DS.B (.W or .L) defines a block of storage
• Any label is associated with the first word of the block

Line DS.B 132
• The program loader (part of the operating system) accomplishes this

 -more-

3-45 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Pseudo Operations in the MC68000
Assembler (cont’d.)

• # symbol indicates the value of the symbol instead of a location
addressed by the symbol

MOVE.L #1000, D0 ;moves 1000 to D0

MOVE.L 1000, D0 ;moves value at addr. 1000 to D0
• The assembler detects the difference and assembles the appropriate

instruction

• ORG specifies a memory address as the origin where the following
code will be stored

Start ORG $4000 ;next instruction/data will be loaded at
 ;address 4000H.

• The Motorola assembler uses $ in front of a number to indicate
hexadecimal

• Character constants are in single quotes: ‘X’

3-46 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Review of Assembly, Link, Load, and
Run Times

• At assemble time, assembly language text is converted to (binary)
machine language

• They may be generated by translating instructions, hexadecimal or decimal
numbers, characters, etc.

• Addresses are translated by way of a symbol table
• Addresses are adjusted to allow for blocks of memory reserved for arrays,

etc.

• At link time, separately assembled modules are combined and absolute
addresses assigned

• At load time, the binary words are loaded into memory
• At run time, the PC is set to the starting address of the loaded module

(usually the o.s. makes a jump or procedure call to that address)

3-47 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

MC68000 Assembly Language Example:
Clear a Block

• Subroutine expects block base in A0, count in D0
• Linkage uses the stack pointer, so A7 cannot be used for anything

else

MAIN …
 MOVE.L #ARRAY, A0 ;Base of array
 MOVE.W #COUNT, D0 ;Number of words to clear
 JSR CLEARW ;Make the call
 …

CLEARW BRA LOOPE ;Branch for init. Decr.
LOOPS CLR.W (A0)+ ;Autoincrement by 2 .
LOOPE DBF D0, LOOPS ;Dec.D0,fall through if -1

 RTS ;Finished.

3-48 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Exceptions: Changes to Sequential
Instruction Execution

• Exceptions, also called interrupts, cause next instruction fetch
from other than PC location

• Address supplying next instruction called exception vector

• Exceptions can arise from instruction execution, hardware
faults, and external conditions

• Externally generated exceptions usually called interrupts
• Arithmetic overflow, power failure, I/O operation completion, and

out of range memory access are some causes

• A trace bit =1 causes an exception after every instruction
• Used for debugging purposes

3-49 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Steps in Handling MC68000 Exceptions

• (1) Status change
• Temporary copy of status register is made

• Supervisor mode bit S is set, trace bit T is reset

• (2) Exception vector address is obtained
• Small address made by shifting 8 bit vector number left 2

• Contents of the longword at this vector address is the address of the
next instruction to be executed

• The exception handler or interrupt service routine starts there

• (3) Old PC and status register are pushed onto supervisor stack,
addressed by A7' = SSP

• (4) PC is loaded from exception vector address
• Return from handler is done by RTE

• Like RTR except restores status register instead of CCs

3-50 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Exception Priorities

• When several exceptions occur at once, which exception
vector is used?

• Exceptions have priorities, and highest priority exception
supplies the vector

• MC68000 allows 7 levels of priority
• Status register contains current priority
• Exceptions with priority ≤ current are ignored

3-51 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Exceptions and Reset Both Affect
Instruction Interpretation

• More processor state needed to describe reset and exception
processing

Reset: Reset input
exc_req: Single bit exception request
exc_lev〈2..0〉: Exception Level
vect〈7..0〉 : Vector address for this exception
exc := exc_req ∧ (exc_lev〈2..0〉 > INT〈2..0〉): There is a request, and the request

level is > current mask in status reg.

• exc_lev is the highest priority of any pending exception

3-52 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Exceptions Are Sensed Before Fetching
Next Instruction

• Reset starts the computer with a stack pointer from location
0 at the address from location 4

Instruction_interpretation := (
Run ∧ ¬(Reset ∨ exc) → (IR ← Mw[PC] : PC ← PC + 2); Normal execution state
Reset → (INT〈2..0〉 ← 7 : S ← 1 : T ← 0: Machine reset

SSP ← Ml[0] : PC ← Ml[4] :
Reset ← 0 : Run ← 1);

Run ∧ ¬Reset ∧ exc → (SSP ← SSP - 4; Ml[SSP] ← PC; Exception handling
SSP ← SSP - 2; Mw[SSP] ← Status;
S ← 1 : T ← 0 : INT〈2..0〉 ← exc_lev〈2..0〉 :
PC ← Ml[vect〈7..0〉#002]);

Instruction_execution).

3-53 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Memory-Mapped I/O

• No separate I/O space. Part of cpu memory space is devoted/
reserved for I/O instead of RAM or ROM.

• Example: MC68000 has a total 24-bit address space. Suppose the
top 32K is reserved for I/O:

FFFFFFH
 . . .
FF8000H
FF7FFFH

 . . .
000000H

}

} Memory Space

I/O Space

Notice that top 32K can be addressed by a negative 16-bit value.

3-54 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Memory-Mapped I/O in the MC68000

• Memory-mapped I/O allows µprocessor chip to have one bus
for both memory and I/O

• Multiple wires for both address and data

• I/O uses address space that could otherwise contain memory
• Not popular with machines having limited address bits

• Sizes of I/O and memory “spaces” independent
• Many or few I/O devices may be installed
• Much or little memory may be installed

• Spaces are separated by putting I/O at top end of the address
space

3-55 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 3.8 A Memory-Mapped Keyboard
Interface

MC68000 has a 24-bit address bus.

Address space runs from 000000H
up to FFFFFFH.

A 16-bit address constant can be
positive, and sign extend to an
address running from 000000H up
to the maximum positive value,
or negative, and sign extend to an
address running from FFFFFFH
down to the last negative 16-bit value.

I/O addresses in latter range can
be accessed by a 16-bit constant.

Keyboard interface

n

Memory
FF7FFFH

000000H

CPU

KBSTATUS

Character

available

KBDATA

Keyboard
"Q"

1FF8006H

FF8008H 00001101

n-bit system bus

3-56 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

The SPARC (Scalable Processor
ARChitecture) as a RISC Microprocessor

Architecture

• The SPARC is a general register, load-store architecture
• It has only two addressing modes. Address =

• (Reg + Reg) or (Reg + 31-bit constant)

• Instructions are all 32 bits in length
• SPARC has 69 basic instructions
• Separate floating-point register set

• First implementation had a 4-stage pipeline
• Some important features not inherently RISC

• Register windows: Separate but overlapping register sets
available to calling and called routines

• 32-bit address, big-endian organization of memory

3-57 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 3.9
Simplified
SPARC
Processor
State

31 0
r31

31 0
IR

31 0

0

0

WIM

31 0
PC

31
TBR

31 0
nPC

31
Y

r24

r23

r16

r15

31 0
f31

f30

f2

f1
f0

r8

r7

r1

r0

In

parameters

Local

registers

Out

parameters

Global

registers

Integer registers Floating-point registers

0

Condition codes

Processor-status register

Instruction register Window-invalid mask

Program counter Trap base register

Next program counter Multiply step register

n z v c

3-58 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 3.10 SPARC Register Windows
Mechanism

r31
in

parameters

local

registers

out

parameters

in

parameters

local

registers

out

parameters

in

parameters

local

registers

out

parameters

CWP = N

r24

r16

r23

r15

r8

r31

r24

r16

r23

r15

r8

r31

global

registers

CWP = N – 1 CWP = N

r24

r16

r23

r15

r8

save restore

r7

r0

3-59 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

SPARC Memory

RTN for the SPARC memory:
Mb[0..232-1]〈7..0〉: Byte memory
Mh[a] 〈15..0〉 := Mb[a] 〈7..0〉#Mb[a + 1] 〈7..0〉: Halfword memory
M[a] 〈31..0〉 := Mh[a] 〈15..0〉#Mh[a + 2] 〈15..0〉: Word memory

3-60 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Register Windows Format the General
Registers

• 32 general integer and address registers are accessible at any one
time

• Global registers G0..G7 are not in any window

• G0 is always zero: writes to G0 are ignored, reads return 0
• The other 24 are in a movable window from a total set of 120

• On subroutine call, the starting point changes so that 24–31
before call become 8–15 after

• Registers 8–15 are used for incoming parameters
• Registers 24–31 are for outgoing parameters
• Current Window Pointer CWP locates register 8

• Overflow of register space causes trap

3-61 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

save, restore, and the Current Window
Pointer

• CWP points to the register currently called G8
• save moves it to point of the old G24

• This makes the old G24..G31 into the new G8..G15

• If parameters are placed in G24..G31 by the caller, the callee can
get them from G8..G15

• When all windows are used, save traps to a routine that saves
registers to memory

• Windows wrap around in the available registers
• Window overflow “spills” the first window and reuses its space

3-62 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

SPARC Operand Addressing

• One mode computes address as sum of 2 registers; G0 gives
zero if used

• The other mode adds sign-extended 13-bit constant to a
register

• These can serve several purposes
• Indexed: base in one register, index in another
• Register indirect: G0 + Gn

• Displacement: Gn + const, n ≠ 0
• Absolute: G0 + constant

• Absolute addressing can only reach the bottom or top 4K
bytes of memory

3-63 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTN for SPARC Instruction Format

op〈1..0〉 := IR〈31..30〉: Instruction class, op code for format 1;
disp30〈29..0〉 := IR〈29..0〉: Word displacement for call, format 1;
a := IR〈29〉: Annul bit for branches, format 2a;
cond〈3..0〉 := IR〈28..25〉: Branch condition select, format 2a;
rd〈4..0〉 := IR〈29..25〉: Destination register for formats 2b & 3;
op2〈2..0〉 := IR〈24..22〉: Op code for format 2;
disp22〈21..0〉 := IR〈21..0〉: Constant for branch displacement or sethi;
op3〈5..0〉 := IR〈24..19〉: Op code for format 3;
rs1〈4..0〉 := IR〈18..14〉: Source register 1 for format 3;
opf〈8..0〉 := IR〈13..5〉: Sub-op code for floating point, format 3a;
i := IR〈13〉: Immediate operand indicator, formats 3b & c;
simm13〈12..0〉 := IR〈12..0〉: Signed immediate operand for format 3c;
rs2〈4..0〉 := IR〈4..0〉: Source register 2 for format 3b.

3-64 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 3.11 SPARC Instruction Formats

• Three basic formats with variations

SPARC instruction formatsFormat number

rs2op rd op3 rs1

31

3a. Floating point

3b. Data movement

3c. ALU

30 29 25 24 19 18 14 13 12 5 4 0

i (register or immediate)

opf

op rd op3 rs1 1 simm13

op rd op3 rs1 0 asi rs2

0 0 a cond op2 disp22

0 0 rd op2 disp22

31
2a. Branches

2b. sethi

30 29 28 2425 22 21 0

0 1 disp30

31

1. Call

30 29 0

3-65 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTN For SPARC Addressing Modes

adr〈31..0〉 := (i=0 → r[rs1] + r[rs2]: Address for load, store,
i=1 → r[rs1] + simm13〈12..0〉 {sign ext.}): and jump

calladr〈31..0〉 := PC〈31..0〉 + disp30〈29..0〉 #002: Call relative address
bradr〈31..0〉 := PC〈31..0〉 + disp22〈21..0〉 #002{sign ext.}: Branch address

3-66 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTN For SPARC Instruction
Interpretation

instruction_interpretation := (IR ← M[PC]; instruction_execution;
update_PC_and_nPC; instruction_interpretation):

3-67 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Tbl 3.8 SPARC Data Movement
Instructions

Inst. Op. OPCODE Meaning
ldsb 11 00 1001 Load signed byte
ldsh 11 00 1010 Load signed halfword
ldsw 11 00 1000 Load signed word
ldub 11 00 0001 Load unsigned byte
lduh 11 00 0010 Load unsigned halfword
ldd 11 00 0011 Load doubleword
stb 11 00 0101 Store byte
sth 11 00 0110 Store halfword
stw 11 00 0100 Store word
std 11 00 0111 Store double word
swap 11 00 1111 Swap register with memory
or 10 00 0010 r[d] ← r[s1] OR (r[rs2] or immediate)
sethi 00 Op2=100 High order 22 bits of Rdst ← disp22

3-68 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Register and Immediate Moves in the
SPARC

• OR is used with a G0 operand to do register-to-register moves
• To load a register with a 32-bit constant, a 2-instruction sequence

is used
SETHI R17, #upper22
OR R17, R17, #lower10

• Doublewords are loaded into an even register and the next higher
odd one

• Floating-point instructions are not covered, but the 32 FP registers
can hold single-length numbers, or 16 64-bit FP, or 8 128-bit FP
numbers

3-69 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Tbl 3.9 SPARC Arithmetic Instructions

• All are format 3, Op = 10
• CCs are set if S = 1 and not if S = 0

• Both register and immediate forms are available
• Multiply is done by software using MULSCC or using floating-

point instructions
• Multiply is hard to do in one clock but multiply step is not

Inst. Op. OPCODE Meaning
add 10 0S 0000 Add or add and set condition codes
addx 10 0S 1000 Add with carry: set CCs or not
sub 10 0S 0100 Subtract: subtract and set CCs or not
subx 10 0S 1100 Subtract with borrow: set CCs or not
mulscc 10 10 1100 Do one step of multiply

3-70 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Tbl 3.10 SPARC Logical and Shift
Instructions

• All instructions use format 3 with op = 10
• Both register and immediate forms are available

• Condition codes set if S = 1 and undisturbed if S = 0

Inst. Op. OPCODE Meaning
AND 10 0S 0001 AND, set CCs if S=1 or not if S=0
ANDN 10 0S 0101 NAND, set CCs or not
OR 10 0S 0010 OR, set CCs or not
ORN 10 0S 0110 NOR, set CCs or not
XOR 10 0S 0011 XNOR(Equiv), set CCs or not
SLL 10 10 0101 Shift left logical, count in RSRC2 or imm13
SRL 10 10 0110 Shift right logical, count in RSRC2 or imm13
SRA 10 10 0111 Shift right arithmetic, count as above

3-71 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Tbl 3.11 SPARC Branch and Control
Transfer Instructions

Inst. Format Op Op2 or Op3 Meaning
ba 2 00 010 Unconditional branch
bcc 2 00 010 Conditional branch
call 1 01 Call & save PC in R15
jmpl 3 10 11 1000 Jmp to EA, save PC in Rdst
save 3 10 11 1100 New register window, & ADD
restore 3 10 11 1101 Restore reg. window, & ADD

Some condition fields:
Inst. COND Inst. COND Inst. COND Inst. COND
ba 1000 bne 1001 be 0001 ble 0010
bcc 1101 bcs 0101 bneg 0110 bvc 1111
bvs 0111

3-72 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 3.12 Example SPARC Assembly Program

.begin

.org
prog: ld [x], %r1 ! Load a word from M[x] into register %r1.

ld [y], %r2 ! Load a word from M[y] into register %r2.

addcc%r1, %r2, %r3 ! %r3 ← %r1 + %r2 ; set CCs.

st %r3, [z] ! Store sum into M[z].

jmpl %r15, +8, %r0 ! Return to caller.
nop ! Branch delay slot.

x: 15 ! Reserve storage for x, y, and z.

y: 9
z: 0

.end

Note different syntax for SPARC.
Note r15 contains return address—placed there by the OS in this case.

3-73 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 3.13 Example of Subroutine Linkage
in the SPARC

.begin

.org
prog: ld [x], %o0 !Pass parameters in

ld [y], %o1 ! first 3 output registers.
call add3 !Call subroutine to put result in %o0.
mov -17, %o2 !Set last parameter in delay slot
st %o0, [z] !Store returned result.
...

x: 15
y: 9
z: 0
add3: save %sp,-(16*4),%sp !Get new window and adjust stack pointer.

add %i0, %i1, %l0 !Add parameters that now appear in
add %l0, %i3, %l0 ! input registers using a local.
ret !Return. Short for jmp %i7+8.
restore %l0, 0, %o0 !Result moved to caller’s %o0.
.end

3-74 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Pipelining of the SPARC Architecture

• Many aspects of the SPARC design are in support of a pipelined
implementation

• Simple addressing modes, simple instructions, delayed branches, load-store
architecture

• Simplest form of pipelining is fetch-execute overlap—fetching next
instruction while executing current instruction

• Pipelining breaks instruction processing into steps
• A step of one instruction overlaps different steps for others

• A new instruction is started (issued) before previously issued instructions
are complete

• Instructions guaranteed to complete in order

3-75 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 3.14 The SPARC MB86900 Pipeline

• 4 pipeline stages are Fetch, Decode, Execute, and Write
• Results are written to registers in Write stage

Fetch Dec. Exec. WriteInstr. 1

Fetch Dec. Exec. Write

Fetch Dec. Exec. Write

Fetch Dec. Exec. Write

Instr. 2

Instr. 3

Instr. 4

1 2 3 4 5 6 7

Clock Cycle

3-76 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Pipeline Hazards

• Will be discussed later, but main issue is:
• Branch or jump change the PC as late as Exec or Write, but

next instruction has already been fetched
• One solution is delayed branch
• One (maybe 2) instruction following branch is always executed,

regardless of whether branch is taken

• SPARC has a delayed branch with one delay slot, but also allows
the delay slot instruction to be annulled (have no effect on the
machine state) if the branch is not taken

• Registers to be written by one instruction may be needed by
another already in the pipeline, before the update has happened
(data hazard)

3-77 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

CISC versus RISC: Recap

• CISCs supply powerful instructions tailored to commonly
used operations, stack operations, subroutine linkage, etc.

• RISCs require more instructions to do the same job

• CISC instructions take varying lengths of time
• RISC instructions can all be executed in the same few-cycle

pipeline
• RISCs should be able to finish (nearly) one instruction per

clock cycle

3-78 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Key Concepts: RISC versus CISC

• While a RISC machine may possibly have fewer instructions
than a CISC, the instructions are always simpler. Multistep
arithmetic operations are confined to special units.

• Like all RISCs, the SPARC is a load-store machine. Arithmetic
operates only on values in registers.

• A few regular instruction formats and limited addressing modes
make instruction decode and operand determination fast.

• Branch delays are quite typical of RISC machines and arise from
the way a pipeline processes branch instructions.

• The SPARC does not have a load delay, which some RISCs do,
and does have register windows, which many RISCs do not.

3-79 Chapter 3—Some Real Machines

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Chapter 3 Summary

• Machine price/performance are the driving forces.
• Performance can be measured in many ways: MIPS, execution

time, Whetstone, Dhrystone, SPEC benchmarks.

• CISC machines have fewer instructions that do more.
• Instruction word length may vary widely
• Addressing modes encourage memory traffic

• CISC instructions are hard to map onto modern architectures

• RISC machines usually have
• One word per instruction

• Load/store memory access
• Simple instructions and addressing modes
• Result in allowing higher clock cycles, prefetching, etc.

