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Practical Aspects of Machine Cost-
Effectiveness

e Codt for useful work isfundamental issue

* Mounting, case, keyboard, etc. are dominating the cost of
Integrated circuits

« Upward compatibility preserves softwar e investment
e Binary compatibility
* Source compatibility
* Emulation compatibility

« Performance: strong function of application
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Performance Measures

« MIPS: Millions of I nstructions Per Second

¢ Samejob may take moreinstructions on one machinethan on
another

« MFLOPS: Million Floating Point OPs Per Second
e Other instructions counted as overhead for thefloating point

* Whetstones: Synthetic benchmark
* A program made up to test specific performance features

e Dhrystones: Synthetic competitor for Whetstone
« Madeup to“correct” Whetstone's emphasis on floating point

« SPEC: Selection of “real” programs
* Taken from the C/Unix world
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CISC Versus RISC Designs

e CISC: Complex Instruction Set Computer
* Many complex instructions and addressing modes
* Someinstructionstake many stepsto execute
* Not always easy to find best instruction for atask

* RISC: Reduced Instruction Set Computer
* Few, ssimpleinstructions, addressing modes
* Usually oneword per instruction
* May take several instructionsto accomplish what CISC can doin one
* Complex address calculations may take several instructions
* Usually hasload-store, general register | SA
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Design Characteristics of RISCs

« Simpleinstructions can be donein few clocks
o Simplicity may even allow a shorter clock period

* A pipelined design can allow an instruction to completein every
clock period

* Fixed length instructions ssimplify fetch and decode

* Therulesmay allow starting next instruction without necessary
results of the previous

* Unconditionally executing the instruction after a branch
» Starting next instruction beforeregister load is complete
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* Prefetching of instructions. (Similar to 18086.)

an instruction attemptsto access them.

with SPARC in this chapter.
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Other RISC Characteristics

* Pipdining: beginning execution of an instruction beforethe previous
Instruction(s) have completed. (Will cover in detail in Chapter 5.)

e Superscalar operation—issuing mor e than one instruction ssmultaneousdly.
(Instruction-level parallelism. Also covered in Chapter 5.)

« Delayed loads, stores, and branches. Operands may not be available when

* Register windows—ability to switch to a different set of CPU registerswith
a single command. Alleviates procedure call/return overhead. Discussed
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Tbl 3.1 Order of Presenting or
Developing a Computer ISA

Memories. structure of data storage in the computer
* Processor-stateregisters
« Main memory organization

Formats and their interpretation: meanings of register fields
e Datatypes
 Instruction format
 |nstruction addressinterpretation

| nstruction interpretation: things done for all instructions
* Thefetch-execute cycle
» Exception handling (sometimes deferred)

| nstruction execution: behavior of individual instructions
e Grouping of instructionsinto classes
« Actions performed by individual instructions
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CISC: The Motorola MC68000

e |ntroduced in 1979

e Oneof first 32-bit microprocessors
 Meansthat most operations are on 32-bit internal data
* Some operations may use different number of bits
« External data paths may not all be 32 bitswide
« MC68000 had a 24-bit address bus

 Complex Instruction Set Computer—CISC
e Largeinstruction set
* 14 addressing modes
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Features of the 68000 Processor State

 Distinction between 32-bit data registersand 32-bit address
registers
« 16-bit instruction register
e Variablelength instructions handled 16 bitsat atime
o Stack pointer registers
o User stack pointer isone of theaddressregisters
e System stack pointer isa separate singleregister
» Discuss. Why a separ ate system stack
e Condition coderegister: System and user bytes
* Arithmetic status(N, Z, V, C, X) isin user status byte

« System status has supervisor and trace mode flags, aswell asthe
interrupt mask
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RTN Processor State for the MC68000

D[0..7]31..0C] General purpose data registers
A[0..7]0(31..0C] Address registers
A7 [31..00 System stack pointer
PC31..0 Program counter
IR[15..00] Instruction register
Status[15..0] System status byte and user status byte
SP = A[7]: User stack pointer, also called USP
SSP .= A7": System stack pointer
C .= Status[Ol V .= Statusdll Carry and Overflow flags
Z .= Status[21 N := Status[3] Zero and Negative flags
X ;= Status(4] Extend flag
INTL2..0LL= Status[10..8L] Interrupt mask in system status byte
S = Status[13L T := Statusil5LISupervisor state and Trace mode flags
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Main memory:

« Theword and longword forms are * big-endian”

of theword

described in the above RTN
 Word addresses must end in one binary O
* Longword addresses must end in two binary zeros
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Main Memory in the MC68000

Mb[0..224-1](T..0C] Memory as bytes
Mwl[ad][15..0(t= Mb[ad]#Mb[ad+1]: Memory as words
Mi[ad](31..0t= Mw[ad]#Mw[ad+2]: Memory as long words

* Thelowest numbered byte contains the most significant bit (big end)

« Wordsand longwords have “hard” alignment constraints not

Chapter 3—Some Real Machines\
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MCG68000 Supports Several Operand
Types

« Likemany CISC machines, the 68000 allows one instruction
to operate on several types

« MOVE.B for bytes, MOVE.W for words, and MOVE.L for
longwords; also ADD.B, ADD.W, ADD.L, etc.

* Operand length iscoded as bits of the instruction word
* Bitscoding operand type vary with instruction

* For usewith RTN descriptions, we assume a function
d :=datalen(IR) that returns 1, 2, or 4 for operand length

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan //
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15 0
IR op rg2 |md2 | mdl | rgl

(@) A 1-word move instruction

15 0
IR .-~ | mdl | rgl
Extra word 16-bit constant
Extra word 16-bit constant

(c) A 3-word instruction
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Fig 3.2 Some MC68000 Instruction
Formats
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15 0
mdl| rgl | IR
16-bit constant Extra word

(b) A 2-word instruction

15 0
110 | Reg | IR
d/a{Index reg|w/I{000 disp8 Extra word

(d) Instruction with indexed address
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General Form of Addressing Modes
in the MC68000

A general address of an operand or result is
specified by a 6-bit field with mode and
register numbers

5 4 3 2 1 O

mode reg

* Provides access paths to operands

 Not all operands and results can be specified
by a general address: some must be in
registers

 Not all modes are legal in all parts of an
Instruction
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Thl 3.2 MC68000 Addressing Modes

Immediate #data

5 4 3 2 1 O
mode reg
Name Mode Reg. Assembler Extra
Words
Data reg. direct 0 0-7 Dn 0
Addr. reg. direct 1 0-7 An 0
Addr. reg. indirect 2 0-7 (An) 0
Autoincrement 3 0-7 (An)+ 0
Autodecrement 4 0-7 -(An) 0
Based 5 0-7 displ6(An) 1
Based indexed short 6 0-7 disp8(An,XnLo) 1
Based indexed long 6 0-7 disp8(An,Xn) 1
Absolute short 7 0 addrl6 1
Absolute long 7 1 addr32 2
Relative 7 2 disp16(PC) 1
Rel. indexed short 7 3 disp8(PC,XnLo) 1
Rel. indexed long 7 3 disp8(PC,Xn) 1
7 4

e
N

Brief description

Dn

An

M[AN]

M[AN];An «An+d
An —An-d;M[AN]
M[ANn+disp16]
M[An+XnLo+disp8]
M[An+Xn+disp8]
M[addr16]
M[addr32]
M[PC+disp16]
M[PC+XnLo+disp8]
M[PC+Xn+disp8]
data

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan
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RTN Description of MC68000 s

Chapter 3—Some Real Machines\

4 3 2 1 O

Addressing

mode reg

* Theaddressing modes inter pret many items
* Theinstruction: inthe IR register

« TheD and A registersin the CPU

address
« Some modes designate a register
« Some modesresult in a constant oper and

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan

* Thefollowing 16-bit word: described as Mw[PC]

« Many addressing modes calculate an effective memory

e Therearerestrictionson the use of some modes

© 1997 V. Heuring and H. Jordan //
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RTN Formatting for Effective Address

Calculation
XR[0..15]31..0t=
D[0..7](31..003# A[0..7][31..0C] Index register can be D or A;
Xri3..0lt= Mw[PC]15..12[ Index specifier for index mode;
wl := Mw[PC]I1[] Short or long index flag;
dsp81..0t= Mw[PC][{..0L(] Displacement for index mode;
index := ( (wl=0) - XR[xr]A5..0[] Short or
(wl=1) - XR[xr]31..00 long index value;

* Either an A or aD register can be used as an index

* A 4-bit field in the 2nd instruction word specifiesthe index register
 Low order 8-bitsof 2nd word are used as offset

* Either 16 or 32 bitsof index register may be used

dia| Indexreg [wi|000 | disp8 = Idisp

1 1
15 14 13 12 11 10987 0

‘ 0 = 16 bit index

1 = 32 bit index
0: index is in data register

1: index is in address register
Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j
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Modes That Calculate a e 4 3 2 1 o
Memory Address Using a 010 - 110 000 - 111
Register
 md and rg are the 3-bit mode and
register fields > 4 3 2 1 O
« eastandsfor effective address mode reg
ea(md, rg) :=(
(md =2) - A[rg[2..00: Mode 2 is
A register indirect;
(md =3) - Mode 3 is
(A[rg[2..00; A[rg[2..00 —A[rg[2..000 + d): autoincrement;
(md =4) - Mode 4 is
(A[rg2..00 —~ A[rg2..000 - d; A[rg[2..0]): autodecrement;
(md =5) - Mode 5 is based
(A[rg[2..00 + Mw[PC]; PC ~ PC + 2): or offset addressing;
(md =6) - Mode 6 is based
(A[rg[2..000 + index + dsp8; PC - PC + 2): indexed addressing;

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j
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Mode 7 Uses the Register 5 4 3 2 1 0
Field to Expand the 1 1 1 req
Number of Modes
« These modes still calculate a memory address
ea (md, rg) :=
(md=70rg=0) - Mode 7, register O is
(Mw[PC]{sign extend to 32 bits}; PC -« PC +2): short absolute;
(md=70rg=1) - Mode 7, register 1is
(MI[PC]; PC « PC + 4): long absolute;
(md=70rg=2) - Mode 7, register 2 is
(PC + Mw[PC]{sign extend to 32 bits}; program counter
PC - PC + 2): relative
addressing;
(md=70rg=3) - Mode 7, register 3 is
(PC +index + dsp8; PC « PC+2) ). relative indexed.
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Fig 3.3 Address
Register Indirect
Addressing

68000
_ o Registers
Address register indirect
010 | Reg
—  Address ¢
Ex: MOVE (A6),

Chapter 3—Some Real Machines\
> 4 3 2 1 0

O 10 reg
Main
memory
AQ
A7

e Same picturefor autoincrement or decrement

* Addressregister incremented after address obtained in
autoincrement

* Addressregister decremented before address obtained in
autodecr ement

> Operand

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan
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Fig 3.4 Mode 6: Based 5 4 3 2 1 0

Indexed Addressing 110 reg
Mode 6: Based indexed addressing 68000 Main
Registers memory
A0

110 | Reg
dia| Indexreg (w1000 | disp8 = Idisp —|->Baseaddress~r
1'5 14 13 12 1'1 1098 7 0 AT

L 0 = 16 bit index Operand

1 = 32 bit index
0: index is in data reg. :
1: index is in address reg. .

DO-D7
Ex: MOVE. W LD SP (A6, D4), ... Lindex (16 or32)¢ |2

 Threethingsareadded to get the address

k?omputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan jj
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Mode 7-0,1: Absolute
Addressing

Absolute short addressing

111 | 000

(Sign extend to 32-bits)

addrl6

15 0
Ex: MOVE. B PRI NTERPORT. W

)

Chapter 3—Some Real Machines\

4 3 2 1 0

000 (16-bit)
1117 001 (32-bit)

Main
memory

Absolute long addressing

111 | 001
addr32Hi -

> Operand -

addr32Lo - Concat,

15 0
Ex: MOVE. W | NTVECT. L,

 Absolute addresses can be 16 or 32 bits

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan
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Indexed Addressing

Relative indexed addressing

111

011

dia| Indexreg [wA|000 | disp8 = Idisp

1 1
15 14 13 12 11 1098 7

Mode 7, Reg 3: Relative 5

Chapter 3—Some Real Machines\

4 3 2 1 0

1 1 1 011
Main
memory

Program ¢counter

'

0 = 16 bit index
1 = 32 bit index
0: index is in data reg.

1: index is in address reg.

base

Ex: MOVE. W LDI SP (PC, D4),

Index (16 or 32) ¢

DO-D7
AO-A7

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan
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« Sameasindexed mode but uses PC instead of A register as

Operand
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memval(md, rg) :=
((mdR2..10=1) O(md2..1F 2) O(mdR2..00}= 6) [
((md2..0C= 7) O(rg2E0)) ):
opnd(md, rg) :=(
(d=1) - opndb(md, rg): (d=2) - opndw(md, rg):
(d=4) - opndl(md, rg) ):
opndl(md, rg)31..01= (
):

opndw(md, rg)5..0t= (
memval(md, rg) - Mw[ea(md, rg)]15..0C]
md =0 - D[rg]15..0C]
md =1 - A[rg]d5..0(]

opndb(md, rg){..0t= (

(md =7 Org = 4) — (MW[PC]Z..00PC — PC+2)):

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan

Operands in Registers or Memory Can
Have Different Lengths

(md =70rg =4) - (Mw[PC]A5..0C0PC ~ PC+2)):

Chapter 3—Some Real Machines\

A memory address is
used with these
modes only.

The operand length in
the instruction tells
which to use.

A long operand can be

A word operand is
similar but needs only
a 16-bit immediate
following the
instruction word.

Byte operands

instruction word.

© 1997 V. Heuring and H. Jordan /j
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to get an operand

 Thereisno memory addresswith thismode

- o) 4 3 2 1 0
Modes 0 and 1: Register oooo| o
Direct Addressing 0010 "
Data Address
Data register direct registers Address register direct registers
000 | Reg DO 001 | Reg AO
—|__ Operand ___»{ Operand
Ex: MOVE D6, b7 Ex: MOVE A6, AT

 Theregister itself providesa placeto storearesult or a place

k?omputer Systems Design and Architecture by V. Heuring and H. Jordan
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Fig 3.5 Mode 7, Reg 4:
Immediate Addressing
Operands are stored
In the instruction

Instruction word and 1 or 2 following words

Chapter 3—Some Real Machines\
25 4 3 2 1 0
1 11 1 00

field

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan

Byte Word Longword
111|100 111 ] 100 111 | 100
00000000 value8 valuel6 valuel6Hi
15 g8 7 0 15 0 valuel6Lo
Ex: MOVE. B #12, Ex: MOVE. W #1234, 15 0

« Datalength is specified by the opcode field, not the Mode/Reg

Ex: MOVE. L #12348678,

© 1997 V. Heuring and H. Jordan //
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Not Every Addressing Mode Can Be
Used for Results

rsltadr(md, rg) := memval(md, rg) -~(md=7 [rg=2Lrg=3)):

« The MC68000 disallowsrelative addressing for results

« Thisiscaptured in RTN by defining a function that istrue (=

1) if the memory address specified by the modeislegal for
results

* Register immediateisalso legal for results, but will be
handled separately

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan //
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rslti(md, rg)31..0%= (
rsltadr(md, rg) - Ml[ea(md, rg)](31..0C]
md =0 - D[rg]:31..0C]
md =1 - A[rg]:31..00 ):
rsltw(md, rg)15..0L= (
rsltadr(md, rg) - Mw[ea(md, rg)]15..0C]
md =0 - D[rg]d5..0]
md =1 - A[rg]15..00 ):
rsltb(md, rg)7..0%= (
rsltadr(md, rg) - Mb[ea(md, rg)]CT..0C
md =0 - D[rg]7..0
md =1 - A[rg]7..00 ):
rslt(md, rg) :=(
(d=1) - rsltb(md, rg): (d=2) - rsltw(md, rg):
(d=4) - rsltl(md, rg) ):

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan

Result Modes Must Have a Place to Write
Data: Memory or Register

Chapter 3—Some Real Machines\

32-hit result

16-bit result

8-bit result

The result length in the
instruction tells
which to use

© 1997 V. Heuring and H. Jordan /j
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MC68000 Instruction Interpretation

* Instruction inter pretation is simple when exceptionsare
ignored

Instruction_interpretation .= (
Run - ( (IR(5..00~ Mw[PC]15..0C1PC ~ PC + 2);
Instruction_execution ); ):

e |nstructions are fetched 16 bits at a time
« PCis advanced by 2 as each 16-bit word is fetched

 Addressing mode may advance it atotal of 2 or 4 or
more words, under command from the control unit




MOVEA.W EAs, An O011rrr0O0lssssss - -
MOVEA.L EAs, An 0010rrr00l1ssssss - -
LEA.L EAC, An 0100aaalllssssss - -
EXG Dx, Dy 1100xxx1nmmmmyyy - -

(compareto SRC)
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Thl 3.3 MC68000 Data Movement
Instructions

Inst. Operands 1st word XNzZVC Operation  Size
—

MOVE.B EAs, EAd 000lddddddssssss - x x 0 O dst « src byte

MOVE.W EAs, EAd 00llddddddssssss - x x 0 O dst ~ src word

MOVE.L EAs,EAd 00l10ddddddssssss - x x 0 O dst ~ srclong

* Theop codelocation and size depends on the instruction

- An ~ src word
- An ~ src long
- An ~ EA addr.
- Dx ~ Dy long

© 1997 V. Heuring and H. Jordan /j
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RTN for a Typical MC68000 Move
Instruction

 The instruction format for Move includes mode and
register for source and destination addresses

op[3..0L=IR[A5..120 rg1[2..0%= IR2..0C] md 12..0CL = IR..3[]
rg2(2..0L= IR11..900 md22..0C%= IR(8..6L]

tmp[31..0

move (:=op3..2[1=0) - (
tmp ~ opnd(md1l, rgl);
( Z « (tmp=0): N « (tmp<0):V -« 0: C <« 0 ):
rslt(md2, rg2) « tmp ):

 Thetemporary register tmp isused because every invocation of
opnd() causes another fetch

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j
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Op.

ADD
SUB
CMP
CMPI
MULS
DIVS
AND
OR
EOR
CLR
NEG
TST
NOT

Operands

EA,Dn
EA,Dn
EA,Dn
#dat,EA
EA, Dn
EA,Dn
EA,Dn
EA,Dn
EA,Dn
EAs
EAs
EAs
EAs

Inst. word

1101rrr mmmuaaaaaa
1001r r r rmmaaaaaa
1011rrr mmmaaaaa
00001100wwaaaaaa
1100rrrlllaaaaaa
1000rrrlllaaaaaa
1100r r r mmmaaaaa
1000r r r mmmaaaaa
1011rrr mmmaaaaa
0100001 0wwaaaaaa
01000100wwaaaaaa
01001010wwaaaaaa
01000110wwaaaaaa

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan

XNZVC

X

X X X O X X X X X X X X X
X X X R X X X X X X X X X
X O X O O O O X O X X X X
X O X O O O 0O o o X X X X

Tbl 3.4 MC68000 Integer Arithmetic and
Logic Instructions

Chapter 3—Some Real Machines\

Operation Sizes
dst — dst +src b, w,|
dst —« dst-srC b, w,|
dst-src b,w, I
dst-immed.data b, w, |
Dn ~Dn*src | —wW*w
Dn ~Dn/src | —l/w
dst—dstlisrc b,w, I
dst—dstlisrc b,w, I
dst—dstlsrc b,w, I
dstldst b,w, I
dst~0 - dst b,w, I
dst-0 b,w, I
dst— -dst b,w, I

© 1997 V. Heuring and H. Jordan /j
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Notes on MC68000 Arithmetic and Logic
Instructions

All 2-operand ALU instructions are either D - EA or EA — D. Whichis it?

* Only oneoperand uses EA
 Theother operand is always accessed by Data register direct

« The3-bit mmm field specifieswhether D isthe source or destination,
and whether it isB, W, or L

Byte Word Long Destination
000 001 010 Dn
100 101 110 EA

Ex: SUB EA, Dn: 1011 rrr mmm aaaaaa

ot

op Dn tblabv. EA

Note: There are several exceptions to the rule above. See text and mfr. data sheet.
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RTN Description of a Typical MC68000
Arithmetic Instruction

e Subtract is a typical arithmetic instruction
 Need atemporary register to hold an address

tmp(31..00] temporary register for address

sub (:=0p=9) - (
(md22[=0) - D[rg2] ~ D[rg2] - opnd(md1, rgl):
(md22F1) - (memval(mdl1, rgl) - (tmp ~ ea(mdl, rgl);
M[tmp] —« M[tmp] - D[rg2] ):
-memval(mdl, rgl) - rsit(mdl, rgl) — rsit(md1, rgl) - D[rg2])
)

 Thisdefinition does not handle the condition codes
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MC68000 Arithmetic Shifts and Single
Word Rotates

Op. Operands  Inst. word XV
ASL
ASd EA 1110000d1laaaaaa X X - — B s
ASd #cnt, Dn 1110cccdwwOO0Or rr X X ASR
ASd Dm Dn  1110RRRAWWL10Orrr X X D
L L <X
RO EA 1110011d1laaaaaa -0 ROL
RO #cnt, Dn 1110cccdwwOllrrr -0 - ~]
RQd Dm Dn  1110RRRdwwllirrr -0 ROR
|_> Dn—> —|—>

 disL or R for left or right shift, respectively
« EA form hasshift count of 1

Qomputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan //
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MC68000 Logical Shifts and Extended
Rotates

Op. Operands Inst. word XV
L Sd EA 1110001d1llaaaaaa x 0 __LsL
LSd #cnt, Dn 1110cccdwnOOl1rrr X 0 m R et
LSd Dm Dn 1110RRRAWWLOLr rr x 0 [F{—DbDn— K
ROXL
= -
ROXd EA 1110010d1laaaaaa Xx 0 @ -
ROXd #cnt, Dn 1110cccdwnwO10rrr x 0 - b= kX
ROXd Dm Dn 1110RRRAWAL10r r x 0
* Field ww specifies byte, word, or longword
N and Z set according to result, C = last bit shifted out
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MC68000 Conditional Branch and Test
Instructions

Op. Operands Inst. word Operation

Bcc disp 0110ccccdddddddd if (cond) then
DDDDDDDDDDDDDDDD PC - PC + disp

DBcc Dn,disp 010l1lcccc11001rrr if =(cond) then Dn-Dn-1
I f (Dn#-1) then PC—~PC+di sp)
else PC « PC + 2

Scc EA Ol0lccccllaaaaaa if (cond) then (EA) ~ FFH
el se (EA) ~ OOH

« DBccisused for counted loopswith an optional end condition
* Sccsetsabytetothe outcome of atest
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Conditions That Can Be Evaluated for
Branch, Etc.
Code Meaning Name Flag expression
0000 true T 1
0001 false F )
0100  carry clear CC C
0101 carry set CS C
0111  equal EQ z
0110 not equal NE Z
1011  minus M N
1010  plus PL N
0011 low or same LS C+Z
1101 less than LT N-V+N-V
1100 greater or equal GE N-V+N-V _
1110  greater than GT N-V-Z+N-V-Z
1111 less or equal LE N-V+N-V+Z
0010 high HI CZ
1000  overflow clear VC V
1001 overflow set VS V
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Conditional Branches First Set Condition
Codes, Then Branch

1f ( X =0 ) goto LOC

TST X ‘ands X wwth itself and sets N and Z
BEQ LOC ;branch to LOCif X =0

LOC:

* EQ teststheright condition codesfor =0, asabove, or A =B
following a compare, CMP A, B
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MC68000 Unconditional Control
Transfers

Op. Operands Inst. word Operation

BRA di sp 01100000dddddddd PC — PC +disp
DDDDDDDDDDDDDDDD

BSR  disp 01100001dddddddd - (SP) — PC; PC — PC +disp
DDDDDDDDDDDDDDDD

JMP EA 0100111011laaaaaa PC < EA

JSR EA 0100111010aaaaaa -(SP) « PC; PC ~ EA

* Subroutinelinks push thereturn address onto the stack
pointed to by A7=SP

Chapter 3—Some Real Machines\
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MC68000 Subroutine Return Instructions

Op. Operands Inst. word Operation

RTR 0100111001110111 CC « (SP)+; PC — (SP)+

RTS 0100111001110101 PC ~ (SP)+

LI NK  An, di sp 0100111001010rrr -(SP) < An; An - SP;
DDDDDDDDDDDDDDDD SP ~ SP +disp

UNLK  An 01001110010112rrr SP —~ An; An ~ (SP)+

« Subroutinelinkage uses stack for return address

 LINK and UNLK allocate and de-allocate multiple word stack
frames
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MC68000 Assembly Code Example:
Search an Array

CR EQU 13 ; Define return character.

LEN EQU 132 ; Define |ine | ength.

ORG $1000 ; Locate LINE at 1000H.

LINE DS.B LEN ;, Reserve LEN bytes of storage.
MOVE. B #LEN- 1, DO ;Initialize DO to count-1.
MOVEA. L #LI NE, AO ; AO gets start address of array.

LOOP CMPI. B (AQ) +, #CR ; Make the conpari son.

DBEQ DO, LOOP ; Doubl e test: if LINE[131-D0]#13
<next instruction> ; then decr. DO; if DO#-1 branch

 to LOOP, else to next inst.

* Program searchesan array of bytesto find thefirst carriage
return, ASCII| code 13
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Pseudo-Operations in the MC68000
Assembler

* A pseudo-operation isonethat is performed by the assembler at assembly
time, not by the CPU at run time

 EQU definesa symbol to be equal to a constant. Substitution is made at
assemble time

Pi EQU 314
« DS.B (W or .L) definesa block of storage

* Any label isassociated with the first word of the block
Line DSB 132

* Theprogram loader (part of the operating system) accomplishesthis
-mor e-
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Pseudo Operations in the MC68000
Assembler (cont’d.)

« #symbol indicatesthe value of the symbol instead of a location
addressed by the symbol

MOVE.L #1000, DO :moves1000to DO
MOVE.L 1000, DO :movesvalueat addr. 1000to DO

* Theassembler detectsthe difference and assemblesthe appropriate
instruction

* ORG specifiesa memory address asthe origin wherethe following
code will be stored

Start ORG $4000 ;next instruction/datawill be loaded at
address 4000H.
« The Motorola assembler uses $in front of a number to indicate
hexadecimal

* Character constantsarein single quotes: ‘X’
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Review of Assembly, Link, Load, and
Run Times

« At assemble time assembly language text is converted to (binary)
machine language

* They may be generated by trandating instructions, hexadecimal or decimal
numbers, characters, etc.

* Addressesaretrandated by way of a symbol table

» Addressesare adjusted to allow for blocks of memory reserved for arrays,
efc.

« At link time, separately assembled modules are combined and absolute
addresses assigned

« At load time, the binary words areloaded into memory

« Atruntime, the PC isset tothe starting address of the loaded module
(usually the o.s. makesajump or procedure call to that address)
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MC68000 Assembly Language Example:
Clear a Block

MAI N
MOVE. L #ARRAY, A0 , Base of array
MOVE. W #COUNT, DO : Number of words to clear
JSR CLEARW : Make the call
CLEARW BRA L OOPE :Branch for init. Decr.
LOOPS CLR W (AO) + ; Aut ol ncrenent by 2 .
L OOPE DBF DO, LOOPS ; Dec. DO, fall through if -1
RTS : Fi ni shed.

» Subroutine expects block basein A0, count in DO

* Linkage usesthe stack pointer, so A7 cannot be used for anything
else
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Exceptions: Changes to Sequential
Instruction Execution

« EXxceptions, also called interrupts, cause next instruction fetch
from other than PC location

* Address supplying next instruction called exception vector

* Exceptionscan arise from instruction execution, hardware
faults, and external conditions
» Externally generated exceptionsusually called interrupts

* Arithmetic overflow, power failure, 1/O operation completion, and
out of range memory access ar e some causes

* A tracebit =1 causes an exception after every instruction
» Used for debugging purposes
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Steps in Handling MC68000 Exceptions

e (1) Statuschange
 Temporary copy of statusregister ismade
e Supervisor modebit Sisset, tracebit T isreset
* (2) Exception vector addressis obtained
« Small address made by shifting 8 bit vector number left 2

* Contents of thelongword at this vector addressisthe address of the
next instruction to be executed

* Theexception handler or interrupt serviceroutine startsthere

e (3) Old PC and statusregister are pushed onto supervisor stack,
addressed by A7' = SSP

* (4) PCisloaded from exception vector address

* Return from handler isdoneby RTE
* Like RTR except restores statusregister instead of CCs
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Exception Priorities

* When several exceptionsoccur at once, which exception
vector isused?

* Exceptionshavepriorities, and highest priority exception
suppliesthe vector

« MC68000 allows 7 levels of priority
o Statusregister containscurrent priority
« Exceptionswith priority < current areignored
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Exceptions and Reset Both Affect
Instruction Interpretation

 Moreprocessor state needed to describereset and exception

processing
Reset: Reset input
exc_req: Single bit exception request
exc_lev(2..00] Exception Level
vect[{..00 ; Vector address for this exception

exc :=exc_req U(exc_lev2..0(> INT2..00 There is arequest, and the request
level is > current mask in status reqg.

« exc_levisthehighest priority of any pending exception

© 1997 V. Heuring and H. Jordan //
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Exceptions Are Sensed Before Fetching
Next Instruction

Instruction_interpretation :=(
Run [0-(Reset exc) - (IR « Mw[PC] : PC - PC + 2); Normal execution state
Reset - (INTR.0O-7:S «1:T ~ O: Machine reset
SSP « MI[0] : PC ~ MI[4] :
Reset « 0: Run « 1);
Run [J-Reset [exc - (SSP ~ SSP - 4; MI[SSP] - PC; Exception handling
SSP ~ SSP - 2; Mw[SSP] ~ Status;
S<1:T < 0:INTRZ..00~ exc_levl2..01
PC — Mi[vect[2..0#00,] );
Instruction_execution ).

* Reset startsthe computer with a stack pointer from location
0 at the address from location 4
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Memory-Mapped I/O

* Noseparatel/O space. Part of cpu memory space is devoted/
reserved for 1/O instead of RAM or ROM.

« Example: M C68000 has a total 24-bit addr ess space. Suppose the
top 32K isreserved for 1/0:

FFFFFFH

Lo } I/O Space
FF8000H
FF7FFFH

Memory Space
000000H

Notice that top 32K can be addressed by a negative 16-bit value.
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Memory-Mapped I/O in the MC68000

 Memory-mapped I/O allows pprocessor chip to have one bus
for both memory and 1/0

* Multiplewiresfor both address and data
* 1/O uses address space that could otherwise contain memory
* Not popular with machines having limited addr ess bits
e Sizesof I/O and memory “ spaces’ independent
 Many or few |/O devices may beinstalled
* Much or little memory may beinstalled

» Spaces are separated by putting I/O at top end of the address
space
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Fig 3.8 A Memory-Mapped Keyboard
Interface
FF7FFFH v
000000H smo MC68000 has a 24-bit address bus.
Address space runs from 000000H
CPU up to FFFFFFH.
A 16-bit address constant can be
Keyboard interface positive, and sign extend to an
I address running fror.n.OOOOOOH up
to the maximum positive value,
or negative, and sign extend to an
s Cte A ers008H 00001101 | address running from FFFFFFH
down to the last negative 16-bit value.
o
Keyboard | n-bit system bus /O addresses in latter range can
be accessed by a 16-bit constant.
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The SPARC (Scalable Processor
ARChitecture) as a RISC Microprocessor
Architecture

« TheSPARC isageneral register, load-store ar chitecture
* It hasonly two addressing modes. Address =
* (Reg + Reg) or (Reg + 31-bit constant)
* Instructionsareall 32 bitsin length
« SPARC has 69 basic instructions
« Separatefloating-point register set
* First implementation had a 4-stage pipeline
« Someimportant featuresnot inherently RISC

* Register windows. Separ ate but overlapping register sets
availableto calling and called routines

« 32-bit address, big-endian organization of memory
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Fig 3.9
Simplified
SPARC
Processor
State

Condition codes
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31 0
Y| |
Multiply step register
31 0
TBR | |
Trap base register
31 0
WIM | |

Window-invalid mask

| |n|z|v|c|

Processor-status register

31
nPC |
Next program counter
31
PC |
Program counter
31
IR |
Instruction register
31
r31
L In
: parameters
r24
r23
L Local ]
. registers
rlé
rl5
L Out |
. parameters
r8
r7
L Global ]
X registers
ri
ro =0

Integer registers
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31 0

f31
30

f2
f1
fo

Floating-point registers
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Fig 3.10 SPARC Register Windows

r31

r24
r23

rl6
rl15

8

in
parameters

local
registers

out
parameters

CWP =N

Mechanism

r31

r24
r23

116
(15

r8

save

r7

ro

in
parameters

local
registers

out
parameters

CWP=N-1

global
registers
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8

restore
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in
parameters

local
registers

out
parameters

CWP =N
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SPARC Memory

RTN for the SPARC memory:

M b[0..232-1][4..0(] Byte memory
Mh[a] (15..01= Mbl[a] [(1..0#MDb[a + 1] [7..0L1 Halfword memory
MI[a] [31..000= Mh[a] (15..08M h[a + 2] (15..0C] Word memory
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Register Windows Format the General
Registers

32 general integer and addressregisters are accessible at any one
time

* Global registers GO..G7 arenot in any window

 GOisalwayszero: writesto GO areignored, readsreturn O

* Theother 24 arein a movable window from atotal set of 120

On subroutine call, the starting point changes so that 24-31
befor e call become 8-15 after

Registers 815 are used for incoming parameters
Registers 24-31 arefor outgoing parameters
Current Window Pointer CWP locatesregister 8
Overflow of register space causestrap
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save, r est or e, and the Current Window
Pointer

« CWP pointstotheregister currently called G8

* save movesit to point of theold G24
* Thismakestheold G24..G31 into the new G8..G15

* If parametersareplaced in G24..G31 by the caller, the callee can
get them from G8..G15

 When all windows areused, save trapsto aroutinethat saves
registersto memory

« Windowswrap around in the availableregisters
* Window overflow “ spills’ thefirst window and reusesits space
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SPARC Operand Addressing

One mode computes address as sum of 2 registers; GO gives
zeroif used

The other mode adds sign-extended 13-bit constant to a
register
These can serve several purposes

* Indexed: basein oneregister, index in another

* Register indirect: GO+ Gn

* Displacement: Gn + const, n #0

* Absolute: GO + constant

Absolute addressing can only reach the bottom or top 4K
bytes of memory
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op..00d= I R[31..30L]
disp3029..01= IR[29..0(]
a .= |R[29[]

cond(3..01= | R[28..25[]
rdf4..00d= IR[29..25[]
op22..0L1= IR[24..22[]
disp22(21..01= IR[21..0C]
op305..0L1= IR24..19]
rsif4..000= IR[18..14[]
opf8..0L1= IRI3..5L]

| ;= R3]
smm1312..0t= |R12..0[]
rs2(4..000= I R[4..0(]

RTN for SPARC Instruction Format

Chapter 3—Some Real Machines\

I nstruction class, op code for format 1,
Word displacement for call, format 1,
Annul bit for branches, format 2a;

Branch condition select, format 2a;
Destination register for formats2b & 3;
Op codefor format 2;

Constant for branch displacement or sethi;
Op codefor format 3;

Sourceregister 1 for format 3;

Sub-op code for floating point, format 3a;

| mmediate operand indicator, formats 3b & c;
Signed immediate operand for for mat 3c;
Sourceregister 2 for format 3b.
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Fig 3.11 SPARC Instruction Formats

Format number SPARC instruction formats

31 3029 0
1. Call 01 disp30

31 302928 2524 2221 0
2a. Branches 00 [(a| cond op2 disp22
2b. sethi 00 rd op2 disp22

31 30 29 25 24 1918 141312 54 0
3a. Floating point op rd op3 rsl opf rs2
3b. Data movement op rd op3 rsl |0 asi rs2
3c. ALU op rd op3 rsl |1 simm13

I (register or immediate)

 Threebasic formatswith variations

k?omputer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan jj




f[3-65 Chapter 3—Some Real Machines\

RTN For SPARC Addressing Modes

adr(31..01= (i=0 - r[rsl] + r[rs2]: Addressfor load, store,
I=1 - r[rsl] + smm13[2..0{sign ext.}): and jump

calladr(31..0C1= PCI[31..0} disp30029..003002: Call relative address

bradr(31..01= PC[31..0# disp22(21..00#002{sign ext.} Branch address
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RTN For SPARC Instruction
Interpretation

instruction_interpretation := (IR « M[PC]; instruction_execution;
update PC_and_ nPC; instruction_interpretation):
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Inst.  Op. OPCODE
ldsb 11 00 1001
Idsh 11 00 1010
ldsw 11 00 1000
Idub 11 00 0001
Iduh 11 00 0010
ldd 11 00 0011
stb 11 00 0101
sth 11 00 0110
stw 11 00 0100
std 11 00 0111
swap 11 001111
or 10 00 0010
sethi 00 Op2=100

Thl 3.8 SPARC Data Movement
Instructions
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Meaninq

Load signed byte

Load signed halfword

Load signed word

Load unsigned byte

Load unsigned halfword

Load doubleword

Store byte

Store halfword

Store word

Store double word

Swap register with memory

r[d] < r[s1] OR (r[rs2] or immediate)
High order 22 bits of Rdst — disp22
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Register and Immediate Moves in the
SPARC

OR isused with a GO operand to do register-to-register moves

Toload aregister with a 32-bit constant, a 2-instruction sequence
IS used

SETHI R17, #upper22

OR R17, R17, #lower 10

Doublewords areloaded into an even register and the next higher
odd one

Floating-point instructions are not covered, but the 32 FP registers
can hold single-length numbers, or 16 64-bit FP, or 8 128-bit FP
numbers
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Thl 3.9 SPARC Arithmetic Instructions

Inst. Op. OPCODE Meaning

add 10 0S 0000 Add or add and set condition codes
addx 10 0S 1000 Add with carry: set CCs or not

sub 10 0S 0100 Subtract: subtract and set CCs or not
subx 10 0S 1100 Subtract with borrow: set CCs or not
mulscc 10 10 1100 Do one step of multiply

 Allareformat 3, Op =10
e CCsaresatifS=l1landnotif S=0
* Both register and immediate forms are available

* Multiply isdone by software using MUL SCC or using floating-
point instructions

e Multiply ishard to doin one clock but multiply step isnot
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Tbl 3.10 SPARC Logical and Shift
Instructions

Inst. Op. OPCODE Meaning

AND 10 0S 0001 AND, set CCs if S=1 or not if S=0

ANDN 10 0S 0101 NAND, set CCs or not

OR 10 0S 0010 OR, set CCs or not

ORN 10 0S 0110 NOR, set CCs or not

XOR 10 0S 0011 XNOR(Equiv), set CCs or not

SLL 10 10 0101 Shift left logical, count in RSRC2 or imm13
SRL 10 10 0110 Shift right logical, count in RSRC2 or imm13
SRA 10 10 0111 Shift right arithmetic, count as above

e All instructionsuse format 3 with op =10
* Both register and immediate forms are available

e Condition codesset if S=1 and undisturbed if S=0
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Thl 3.11 SPARC Branch and Control
Transfer Instructions

Inst. Format Op Op2orOp3 Meaning

ba 2 00 010 Unconditional branch

bcc 2 00 010 Conditional branch

call 1 01 Call & save PCin R15

jmpl 3 10 111000 Jmp to EA, save PC in Rdst
save 3 10 111100 New register window, & ADD
restore 3 10 111101 Restore reg. window, & ADD

Some condition fields:

Inst. COND Inst. COND Inst. COND Inst. COND
ba 1000 bne 1001 be 0001 ble 0010
bcc 1101 bcs 0101 bneg 0110 bvc 1111
bvs 0111
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Fig 3.12 Example SPARC Assembly Program
Jbegin
.0rg
prog: Id [X], %rl I Load aword from M[X] into register %r 1.
Id [V], %r2 I Load aword from M[y] into register %r 2.
addcc%rl, %r2, %r3 1%r3 — %rl+%r2 ; set CCs.
st %r3, [Z] I Storesum into M[z].
jmpl  %r15, +8,%r0 I Return to caller.
nop | Branch delay dot.
X: 15 | Reserve storagefor x, y, and z.
y: 9
Z o)
.end
Note different syntax for SPARC.
Note r15 contains return address—placed there by the OS in this case.
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Fig 3.13 Example of Subroutine Linkage
In the SPARC

Jbegin
.0org
prog: Id [X], %00 IPass parametersin
Id [y], %01 I first 3 output registers.
call add3 ICall subroutineto put result in % 0o0.
mov -17, % 02 ISet last parameter in delay dlot
st % 00, [Z] IStorereturned result.
X: 15
y: 9
Z. o)

add3: save % sp,-(16*4),% sp !'Get new window and adjust stack pointer.
add %10, %i1, %10 !'Add parametersthat now appear in

add %10, %i3,%I0 ! inputregistersusing alocal.
ret IReturn. Short for jmp %i7+8.
restore %10, 0, %00 IResult moved to caller’s % o0.
.end
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Pipelining of the SPARC Architecture

Many aspects of the SPARC design arein support of a pipelined
Implementation

* Simple addressing modes, smpleinstructions, delayed branches, load-store
architecture

Simplest form of pipelining is fetch-execute over lap—fetching next
Instruction while executing current instruction

Pipelining breaks instruction processing into steps
* A step of oneinstruction overlaps different stepsfor others

A new instruction isstarted (issued) before previously issued instructions
are complete

| nstructions guar anteed to complete in order
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Fig 3.14 The SPARC MB86900 Pipeline

Clock Cycle
1 2 3 4 5 6 7
Instr. 1 Fetch Dec. Exec. Write
Instr. 2 Fetch Dec. Exec. Write
Instr. 3 Fetch Dec. Exec. Write
Instr. 4 Fetch Dec. Exec. Write

* Resultsarewrittentoregistersin Write stage

k?omputer Systems Design and Architecture by V. Heuring and H. Jordan

* 4 pipeline stages are Fetch, Decode, Execute, and Write
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Pipeline Hazards

 Will bediscussed later, but main issueis:

e Branch or jJump changethe PC aslate as Exec or Write, but
next instruction has already been fetched

* Onesolution isdelayed branch

* One(maybe 2) instruction following branch is always executed,
regar dless of whether branch istaken

 SPARC hasadelayed branch with one delay dot, but also allows
the delay dot instruction to be annulled (have no effect on the
machine state) if the branch isnot taken

* Registersto bewritten by oneinstruction may be needed by
another already in the pipeline, befor e the update has happened
(data hazard)
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CISC versus RISC: Recap

* CISCssupply powerful instructionstailored to commonly
used operations, stack operations, subroutine linkage, etc.

* RISCsrequiremoreinstructionsto do the samejob

e CISC instructionstake varying lengths of time

 RISC instructionscan all be executed in the same few-cycle
pipeline

* RISCsshould be ableto finish (nearly) oneinstruction per
clock cycle
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Key Concepts: RISC versus CISC

« Whilea RISC machine may possibly have fewer instructions
than a CISC, theinstructions are always simpler. Multistep
arithmetic operations ar e confined to special units.

* Likeall RISCs, the SPARC isaload-store machine. Arithmetic
operates only on valuesin registers.

« A few regular instruction formats and limited addressing modes
make instruction decode and oper and deter mination fast.

* Branch delays are quitetypical of RISC machinesand arise from
the way a pipeline processes branch instructions.

« The SPARC doesnot have aload delay, which some RISCsdo,
and does have register windows, which many RISCsdo not.
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Chapter 3 Summary

e Machine price/performance arethedriving forces.

* Performance can be measured in many ways. MIPS, execution
time, Whetstone, Dhrystone, SPEC benchmarks.

e CISC machines have fewer instructionsthat do more.

* Instruction word length may vary widely

* Addressing modes encour age memory traffic

* CISC instructionsare hard to map onto modern ar chitectures
* RISC machinesusually have

* Oneword per instruction

* L oad/store memory access

« Simpleinstructions and addressing modes

« Result in allowing higher clock cycles, prefetching, etc.
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