
6-1 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Chapter 6: Computer Arithmetic
and the Arithmetic Unit

Topics

6.1 Number Systems and Radix Conversion
6.2 Fixed-Point Arithmetic
6.3 Seminumeric Aspects of ALU Design
6.4 Floating-Point Arithmetic

6-2 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Digital Number Systems

• Digital number systems have a base or radix b
• Using positional notation, an m-digit base b number is

written
x = xm-1 xm-2 ... x1 x0

0 ≤ xi ≤ b-1, 0 ≤ i < m
• The value of this unsigned integer is

∑
i=0

m-1
xi⋅bivalue(x) = Eq. 6.1

6-3 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Range of Unsigned m Digit Base b
Numbers

• The largest number has all of its digits equal to b-1, the largest
possible base b digit

• Its value can be calculated in closed form

xmax = ∑
i=0

m-1
(b-1) ⋅bi = (b-1) ⋅ ∑

i=0

m-1
bi = bm - 1

• An important summation—geometric series

∑
i=0

m-1
bi =

bm - 1
b - 1

Eq. 6.2

Eq. 6.3

6-4 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Radix Conversion: General Matters

• Converting from one number system to another involves
computation

• We call the base in which calculation is done c and the
other base b

• Calculation is based on the division algorithm
 — For integers a and b, there exist integers q and r such

that a = q⋅b + r, with 0 ≤ r ≤ b-1
• Notation:
 q = a/b
 r = a mod b

6-5 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Digit Symbol Correspondence
Between Bases

• Each base has b (or c) different symbols to represent the digits
• If b < c, there is a table of b + 1 entries giving base c symbols

for each base b symbol and b
• If the same symbol is used for the first b base c digits as for the

base b digits, the table is implicit

• If c < b, there is a table of b + 1 entries giving a base c number
for each base b symbol and b

• For base b digits ≥ c, the base c numbers have more than one digit

Base 12: 0 1 2 3 4 5 6 7 8 9 A B 10

Base 3: 0 1 2 10 11 12 20 21 22 100 101 102 110

6-6 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Convert Base b Integer to
Calculator’s Base, c

1) Start with base b x = xm-1 xm-2 ... x1 x0

2) Set x = 0 in base c
3) Left to right, get next symbol xi

4) Lookup base c number Di for symbol xi

5) Calculate in base c: x = x⋅b + Di

6) If there are more digits, repeat from step 3
• Example: convert 3AF16 to base 10

x = 0
x = 16x + 3 = 3
x = 16⋅3 + 10(= A) = 58
x = 16⋅58 + 15(= F) = 943

6-7 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Convert Calculator’s Base Integer to
Base b

1) Let x be the base c integer
2) Initialize i = 0 and v = x & get digits right to left
3) Set Di = v mod b & v = v/b . Lookup Di to get xi

4) i = i + 1; If v ≠ 0, repeat from step 3
• Example: convert 356710 to base 12
 3587 ÷ 12 = 298 (rem = 11) ⇒ x0 = B
 298 ÷ 12 = 24 (rem = 10) ⇒ x1 = A
 24 ÷ 12 = 2 (rem = 0) ⇒ x2 = 0
 2 ÷ 12 = 0 (rem = 2) ⇒ x3 = 2
 Thus 358710 = 20AB12

6-8 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fractions and Fixed-Point Numbers

• The value of the base b fraction .f-1f-2...f-m is the value of the
integer f-1f-2...f-m divided by bm

• The value of a mixed fixed point number
 xn-1xn-2...x1x0.x-1x-2...x-m

 is the value of the n+m digit integer
 xn-1xn-2...x1x0x-1x-2...x-m

 divided by bm

• Moving radix point one place left divides by b
• For fixed radix point position in word, this is a right shift of word

• Moving radix point one place right multiplies by b
• For fixed radix point position in word, this is a left shift of word

6-9 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Converting Fraction to Calculator’s
Base

• Can use integer conversion and divide result by bm

• Alternative algorithm
 1) Let base b number be .f-1f-2...f-m
 2) Initialize f = 0.0 and i = -m
 3) Find base c equivalent D of fi

 4) f = (f + D)/b; i = i + 1
 5) If i = 0, the result is f. Otherwise repeat from 3
• Example: convert 4138 to base 10
 f = (0 + 3)/8 = 0.375
 f = (0.375 + 1)/8 = 0.171875
 f = (0.171875 + 4)/8 = 0.521484375

6-10 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Nonterminating Fractions

• The division in the algorithm may give a nonterminating
fraction in the calculator’s base

• This is a general problem: a fraction of m digits in one
base may have any number of digits in another base

• The calculator will normally keep only a fixed number of
digits

• Number should make base c accuracy about that of base b

• This problem appears in generating base b digits of a
base c fraction

• The algorithm can continue to generate digits unless
terminated

6-11 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Convert Fraction from Calculator’s
Base to Base b

1) Start with exact fraction f in base c
2) Initialize i = 1 and v = f
3) D-i = b⋅v; v = b⋅v - D-i; Get base b f-i for D-i

4) i = i + 1; repeat from 3 unless v = 0 or enough base b digits
have been generated

• Example: convert 0.3110 to base 8
 0.31×8 = 2.48 ⇒ f-1 = 2
 0.48×8 = 3.84 ⇒ f-2 = 3
 0.84×8 = 6.72 ⇒ f-1 = 6
• Since 83 > 102, 0.2368 has more accuracy than 0.31

10

6-12 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Conversion Between Related Bases
by Digit Grouping

• Let base b = ck; for example b = c2

• Then base b number x1x0 is base c number y3y2y1y0, where x1
base b = y3y2 base c and x0 base b = y1y0 base c

• Examples: 1021304 = 10 21 304 = 49C16

 49C16 = 0100 1001 11002

 1021304 = 01 00 10 01 11 002

 0100100111002 = 010 010 011 1002 = 22348

6-13 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Negative Numbers, Complements,
and Complement Representations

We will:
• Define two complement operations
• Define two complement number systems

• Systems represent both positive and negative numbers

• Give a relation between complement and negate in a
complement number system

• Show how to compute the complements
• Explain the relation between shifting and scaling a number by

a power of the base
• Lead up to the use of complement number systems in signed

addition hardware

6-14 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Complement Operations
for m-Digit Base b Numbers

• Radix complement of m-digit base b number x
xc = (bm - x) mod bm

• Diminished radix complement of x
xc = bm - 1 - x

• The complement of a number in the range 0≤x≤bm-1 is in
the same range

• The mod bm in the radix complement definition makes
this true for x = 0; it has no effect for any other value of x

• Specifically, the radix complement of 0 is 0

6-15 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Complement Number Systems

• Complement number systems use unsigned numbers to
represent both positive and negative numbers

• Recall that the range of an m digit base b unsigned number is
0≤x≤bm-1

• The first half of the range is used for positive, and the second
half for negative, numbers

• Positive numbers are simply represented by the unsigned
number corresponding to their absolute value

6-16 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Use of Complements to Represent
Negative Numbers

• The complement of a number in the range from 0 to bm/2
is in the range from bm/2 to bm-1

• A negative number is represented by the complement of
its absolute value

• There are an equal number (±1) of positive and negative
number representations

• The ±1 depends on whether b is odd or even and whether
radix complement or diminished radix complement is used

• We will assume the most useful case of even b
• Then radix complement system has one more negative

representation
• Diminished radix complement system has equal numbers

of positive and negative representations

6-17 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Reasons to Use Complement
Systems for Negative Numbers

• The usual sign-magnitude system introduces extra symbols +
and - in addition to the digits

• In binary, it is easy to map 0 ⇒ + and 1 ⇒ -
• In base b > 2, using a whole digit for the two values, + and - ,

is wasteful
• Most important, however, it is easy to do signed addition and

subtraction in complement number systems

6-18 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Tbl 6.1 Complement Representations
of Negative Numbers

• For even b, radix complement system represents one more
negative than positive value

• While diminished radix complement system has 2 zeros but
represents same number of positive and negative values

Radix Complement Diminished Radix Complement

Number NumberRepresentation Representation

0 0 0 0 or bm-1

0<x<bm/2 x 0<x<bm/2 x

-bm/2≤x<0 |x|c = bm - |x| |x|c = bm - 1 - |x|-bm/2<x<0

6-19 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Tbl 6.2 Base 2 Complement
Representations

• In 1’s complement, 255 = 111111112 is often called -0
• In 2’s complement, -128 = 100000002 is a legal value, but trying

to negate it gives overflow

8 Bit 2’s Complement 8 Bit 1’s Complement

Number NumberRepresentation Representation

0 0 0 0 or 255

0<x<128 x 0<x<128 x

-128≤x<0 256 - |x| 255 - |x|-127≤x<0

6-20 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Negation in Complement Number
Systems

• Except for -bm/2 in the b’s comp. system, the negative of
any m digit value is also m digits

• The negative of any number x, positive or negative, in
the b’s or b-1’s complement system is obtained by
applying the b’s or b-1’s complement operation to x,
respectively

• The 2 complement operations are related by
xc = (xc + 1) mod bm

• Thus an easy way to compute one of them will give an
easy way to compute both

6-21 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Digitwise Computation of the
Diminished Radix Complement

• Using the geometric series formula, the b-1’s complement of x
can be written

∑
i=0

m-1
(b-1) ⋅ bi -xc = bm-1-x = ∑

i=0

m-1
xi⋅ bi

∑
i=0

m-1
(b-1-xi) ⋅ bi=

• If 0≤xi≤b-1, then 0≤(b-1-xi)≤b-1, so last formula is
just an m-digit base b number with each digit
obtained from the corresponding digit of x

Eq. 6.9

6-22 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Table-Driven Calculation of
Complements in Base 5

• 4’s complement of 2013415 is
2431035

• 5’s complement of 2013415 is
2431035 + 1 = 2431045

• 5’s complement of 444445 is
000005 + 1 = 000015

• 5’s complement of 000005 is
• (444445 + 1) mod 55 = 000005

Base 5
Digit

4’s
Comp.

0

1

2

3

4

4

3

2

1

0

6-23 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Complement Fractions

• Since m digit fraction is same as m digit integer divided by
bm, the bm in complement definitions corresponds to 1 for
fractions

• Thus radix complement of x = .x-1x-2...x-m is
 (1-x) mod 1, where mod 1 means discard integer
• The range of fractions is roughly -1/2 to +1/2
• This can be inconvenient for a base other than 2
• The b’s comp. of a mixed number

x = xm-1xm-2...x1x0.x-1x-2...x-n is bm - x,
where both integer and fraction digits are subtracted

6-24 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Scaling Complement Numbers by
Powers of the Base

• Roughly, multiplying by b corresponds to moving radix
point one place right or shifting number one place left

• Dividing by b roughly corresponds to a right shift of the
number or a radix point move to the left one place

• There are 2 new issues for complement numbers:
 1) What is new left digit on right shift?
 2) When does a left shift overflow?

6-25 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Right Shifting a Complement Number
to Divide by b

• For positive xm-1xm-2...x1x0, dividing by b corresponds to
right shift with zero fill

0xm-1xm-2...x1

• For negative xm-1xm-2...x1x0, dividing by b corresponds to
right shift with b-1 fill

(b-1)xm-1xm-2...x1

• This holds for both b’s and b-1’s comp. systems
• For even b, the rule is: fill with 0 if xm-1 < b/2 and fill with

(b-1) if xm-1 ≥ b/2

6-26 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Complement Number Overflow on
Left Shift to Multiply by b

• For positive numbers, overflow occurs if any digit other
than 0 shifts off left end

• Positive numbers also overflow if the digit shifted into
left position makes number look negative, i.e. digit ≥ b/2
for even b

• For negative numbers, overflow occurs if any digit other
than b-1 shifts off left end

• Negative numbers also overflow if new left digit makes
number look positive, i.e. digit<b/2 for even b

6-27 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Left Shift Examples with Radix
Complement Numbers

• Non-overflow cases:
 Left shift of 7628 = 6208, -1410 becomes -11210

 Left shift of 0318 = 3108, 2510 becomes 20010

• Overflow cases:
 Left shift of 2418 = 4108 shifts 2≠0 off left
 Left shift of 0418 = 4108 changes from + to -
 Left shift of 7138 = 1308 changes from - to +
 Left shift of 6628 = 6208 shifts 6≠7 off left

6-28 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fixed-Point Addition and Subtraction

• If the radix point is in the same position in both operands,
addition or subtraction act as if the numbers were integers

• Addition of signed numbers in radix complement system
needs only an unsigned adder

• So we only need to concentrate on the structure of an
m-digit base b unsigned adder

• To see this let x be a signed integer and rep(x) be its 2’s
complement representation

• The following theorem summarizes the result

6-29 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Theorem on Signed Addition in a
Radix Complement System

• Theorem: Let s be unsigned sum of rep(x) & rep(y). Then s =
rep(x+y), except for overflow

• Proof sketch: Case 1, signs differ, x≥0, y<0. Then x+y = x-|y|
and s = (x+bm-|y|) mod bm.

 If x-|y|≥0, mod discards bm, giving result, if
 x-|y|<0, then rep(x+y) = (b-| x-|y| |) mod bm.
 Case 3, x<0, y<0. s = (2bm - |x| - |y|) mod bm, which reduces to s

= (bm - |x+y|) mod bm. This is rep(x+y) provided the result is in
range of an m digit b’s comp. representation. If it is not, the
unsigned s<bm/2 appears positive.

6-30 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 6.1 Hardware Structure of a Base b
Unsigned Adder

• Typical cell produces sj = (xj + yj + cj) mod b and cj+1 = (xj + yj + cj)/b
• Since xj, yj ≤ b-1, cj ≤ 1 implies cj+1 ≤ 1, and since c0 ≤ 1, all carries are ≤1,

regardless of b

0 ≤ cj+1 ≤ 1

0 ≤ sj < b

(xj +yj +cj) / b
(xj +yj +cj)mod b

0 ≤ cj ≤ 1

An m-digit base b unsigned adder

xj yj

cm cm–1

sm–1

xm–1 ym–1

c2 c1

s1

x1 y1

c0

s0

x0 y0

Base b digit adder

6-31 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Unsigned Addition Examples

• If result can only have a fixed number of
bits, overflow occurs on carry from
leftmost digit

• Carries are either 0 or 1 in all cases
• A table of sum and carry for each of the b2

digit pairs, and one for carry-in = 1, define
the addition

 12.034 = 6.187510 .9A2C16
 13.214 = 7.562510 .7BE216 Overflow
Carry 01 01 1 11 0 for 16-bit
Sum 31.304 = 13.7510 1.160E16 word

Base 4

+ 0 1 2 3

0 00 01 02 03

1 01 02 03 10

2 02 03 10 11

3 03 10 11 12

6-32 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Implementation Alternatives for
Unsigned Adders

• If b = 2k, then each base b digit is equivalent to k bits

• A base b digit adder can be viewed as a logic circuit
with 2k+1 inputs and k+1 outputs

k k

k

Base b=2k
digit adder

• This combinational logic
circuit can be designed with
as few as 2 levels of logic

• PLA, ROM, and multi-level
logic are also alternatives

• If 2 level logic is used, max.
gate delays for m-digit base b
unsigned adder is 2m s

x y

c0c1

6-33 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Two-Level Logic Design of a Base 4
Digit Adder

• The base 4 digit x is represented by the 2 bits xb xa, y by
yb ya, and s by sb sa

• sa is independent of xb and yb, c1 is given by ybyac0+
xaybc0+xbxac0+xbyac0+xbxaya+xaybya+xbyb,

 while sb is a 12 input OR of 4 input ANDs

xb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
xa 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
yb 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
ya 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
c0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
c1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1
sb 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1
sa 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1

6-34 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 6.2 Base b Radix Complement
Subtracter

• To do subtraction in the radix complement system, it is only
necessary to negate (radix complement) the 2nd operand

• It is easy to take the diminished radix complement, and the
adder has a carry-in for the +1

+ 1Base b adder

(b – 1)'s complement

x – y

x y

6-35 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Overflow Detection in Complement
Add and Subtract

• We saw that all cases of overflow in complement addition
came when adding numbers of like signs, and the result
seemed to have the opposite sign

• For even b, the sign can be determined from the left digit of
the representation

• Thus an overflow detector only needs xm-1, ym-1, sm-1, and an
add/subtract control

• It is particularly simple in base 2

6-36 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 6.3 2’s Complement
Adder/Subtracter

• A multiplexer to select y or its complement becomes
an exclusive OR gate

cm cm–1

qm–1

FA

sm–1

xm–1 ym–1

c3 c2

q2

FA

s2

x2 y2

c1

q1

FA

s1

x1 y1

c0

q0

FA

Subtract
control

s0

x0 y0

r

6-37 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Speeding Up Addition with Carry
Lookahead

• Speed of digital addition depends on carries
• A base b = 2k divides length of carry chain by k

• Two level logic for base b digit becomes complex quickly
as k increases

• If we could compute the carries quickly, the full adders
compute result with 2 more gate delays

• Carry lookahead computes carries quickly
• It is based on two ideas:

• a digit position generates a carry
• a position propagates a carry-in to the carry-out

6-38 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Binary Propagate and Generate
Signals

• In binary, the generate for digit j is Gj = xj⋅yj

• Propagate for digit j is Pj = xj+yj

• Of course xj+yj covers xj⋅yj but it still corresponds to a carry out for a
carry in

• Carries can then be written: c1 = G0 + P0⋅c0

• c2 = G1 + P1⋅G0 + P1⋅P0⋅c0

• c3 = G2 + P2⋅G1 + P2⋅P1⋅G0 + P2⋅P1⋅P0⋅c0

• c4 = G3 + P3⋅G2 + P3⋅P2⋅G1 + P3⋅P2⋅P1⋅G0 + P3⋅P2⋅P1⋅P0⋅c0

• In words, the c2 logic is: c2 is one if digit 1 generates a carry, or if
digit 0 generates one and digit 1 propagates it, or if digits 0 and 1
both propagate a carry-in

6-39 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Speed Gains with Carry Lookahead

• It takes one gate to produce a G or P, two levels of gates
for any carry, and 2 more for full adders

• The number of OR gate inputs (terms) and AND gate
inputs (literals in a term) grows as the number of carries
generated by lookahead

• The real power of this technique comes from applying it
recursively

• For a group of, say, 4 digits an overall generate is
G10 = G3 + P3⋅G2 + P3⋅P2⋅G1 + P3⋅P2⋅P1⋅G0

• An overall propagate is P10 = P
3⋅P2⋅P1⋅P0

6-40 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Recursive Carry Lookahead Scheme

• If level 1 generates G1j and propagates P1j are defined for
all groups j, then we can also define level 2 signals G2j and
P2j over groups of groups

• If k things are grouped together at each level, there will be
logkm levels, where m is the number of bits in the original
addition

• Each extra level introduces 2 more gate delays into the
worst case carry calculation

• k is chosen to trade off reduced delay against the
complexity of the G and P logic

• It is typically 4 or more, but the structure is easier to see
for k=2

6-41 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 6.4 Carry Lookahead Adder for
Group Size k = 2

FA

s7

y7 x7

G7 P7

FA

s6

y6 x6

G6 P6

G1
3 P1

3
c7

FA

s5

y5 x5

G5 P5

FA

s4

y4 x4

G4 P4

G1
2 P1

2
c5

Lookahead
Level 3

Lookahead
Level 2

Lookahead
Level 1

Compute
generate
and
propagate

Adders

P2
1G2

1
c6

FA

s3

y3 x3

G3 P3

FA

s2

y2 x2

G2 P2

G1
1 P1

1
c3

FA

s1

y1 x1

G1 P1

FA

s0

y0 x0 c0

G0 P0

c1

G2
0 P2

0
c2

G3
0 P3

0
c4

G1
0 P1

0

6-42 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 6.5 Digital Multiplication Schema

p: product pp: partial product

x0x1x2x3

y0y1y2y3

(xy0)0(xy0)1(xy0)2(xy0)3(xy0)4

(xy1)0(xy1)1(xy1)2(xy1)3(xy1)4

(xy2)0(xy2)1(xy2)2(xy2)3(xy2)4

(xy3)0(xy3)1(xy3)2(xy3)3(xy3)4

p0p1p2p3p4p5p6p7

pp0

pp1

pp2

pp3

mult ip licand

mult ip l ier

6-43 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Serial by Digit of Multiplier, Then by
Digit of Multiplicand

• If c ≤ b-1 on the RHS of 9, then c ≤ b-1 on the LHS of 9
because 0 ≤ pj+i, xi, yj ≤ b-1

1. for i := 0 step 1 until 2m-1
2. pi := 0;
3. for j := 0 step 1 until m-1
4. begin
5. c := 0;
6. for i := 1 step 1 until m-1
7. begin
8. pj+i := (pj+i + xi yj + c) mod b;
9. c := (pj+i + xi yj + c)/b;
10. end;
11. pj+m := c;
12. end;

6-44 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 6.6 Parallel Array Multiplier for
Unsigned Base b Numbers

p2m – 1 p2m – 2 p2m – 3 p2m – 4 p2

y2

y1

y0

0x00x1x2 0

0

0

0

p1 p0

x y pk
(in)

cincout

pk
(out)

6-45 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Operation of the Parallel Multiplier
Array

• Each box in the array does the base b digit calculations
pk(out) := (pk(in) + x y + c(in)) mod b and c(out) := (pk(in) + x
y + c(in))/b

• Inputs and outputs of boxes are single base b digits,
including the carries

• The worst case path from an input to an output is about 6m
gates if each box is a 2 level circuit

• In base 2, the digit boxes are just full adders with an extra
AND gate to compute xy

6-46 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Series Parallel Multiplication
Algorithm

• Hardware multiplies the full multiplicand by one multiplier
digit and adds it to a running product

• The operation needed is p := p + xyjbj

• Multiplication by bj is done by scaling xyj, shifting it left,
or shifting p right, by j digits

• Except in base 2, the generation of the partial product xyj
is more difficult than the shifted add

• In base 2, the partial product is either x or 0

6-47 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 6.7 Unsigned Series Parallel
Multiplication Hardware

2m-digit right shift register, p

0

xm–1

Multiplicand

xm–2 x2

yj Multiplier digit

x1 x0

Partial product generator

m + 1-digit adder

6-48 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Steps for Using the Unsigned Series
Parallel Multiplier

1) Clear product shift register p.
2) Initialize multiplier digit number j=0.
3) Form the partial product xyj.
4) Add partial product to upper half of p.
5) Increment j=j+1, and if j=m go to step 8.
6) Shift p right one digit.
7) Repeat from step 3.
8) The 2m digit product is in the p register.

6-49 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Multiply with Fixed Length Words:
Integer and Fraction Multiply

• If words can store only m digits, and the radix point is in
a fixed position in the word, 2 positions make sense

 integer: right end, and fraction: left end
• In integer multiply, overflow occurs if any of the upper m

digits of the 2m-digit product ≠0
• In fraction multiply, the upper m digits are the most

significant, and the lower m-digits are discarded or
rounded to give an m-digit fraction

6-50 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Signed Multiplication

• The sign of the product can be computed immediately from
the signs of the operands

• For complement numbers, negative operands can be
complemented, their magnitudes multiplied, and the
product recomplemented if necessary

• A complement representation multiplicand can be handled
by a b’s complement adder for partial products and sign
extension for the shifts

• A 2’s complement multiplier is handled by the formula for a
2’s complement value: add all PP’s except last, subtract it.

value(x) = -xm-12m-1 + ∑xi2i

i=0

m-2
Eq. 6.25

6-51 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 6.8 2’s Complement
Multiplier Hardware

0

Sign
extension

Carry
in

Subtract

m + 1-bit
2’s complement

adder

m – 1 bits

2m-bit accumulator
shift register

m-bit multiplicand
register

m-bit multiplier
shift register

6-52 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Steps for Using the 2’s
Complement Multiplier Hardware

1) Clear the bit counter and partial product accumulator register.
2) Add the product (AND) of the multiplicand and rightmost

multiplier bit.
3) Shift accumulator and multiplier registers right one bit.
4) Count the multiplier bit and repeat from 2 if count less than

m-1.
5) Subtract the product of the multiplicand and bit m-1 of the

multiplier.

Note: bits of multiplier used at rate product bits produced

6-53 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Examples of 2’s Complement
Multiplication

 -5/8 = 1. 0 1 1 6/8 = 0. 1 1 0
× 6/8 = × 0. 1 1 0 ×-5/8 = × 1. 0 1 1
pp0 0 0. 0 0 0 pp0 0 0. 1 1 0
acc. 0 0. 0 0 0 0 add and shift acc. 0 0. 0 1 1 0
pp1 1 1. 0 1 1 pp1 0 0. 1 1 0
acc. 1 1. 1 0 1 1 0 add and shift acc. 0 0. 1 0 0 1 0
pp2 1 1. 0 1 1 pp2 0 0. 0 0 0
acc. 1 1. 1 0 0 0 1 0 add and shift acc. 0 0. 0 1 0 0 1 0
pp3 0 0. 0 0 0 pp3 1 1. 0 1 0
res. 1 1. 1 0 0 0 1 0 add res. 1 1. 1 0 0 0 1 0

Negative multiplicand Negative multiplier

6-54 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Booth Recoding and Similar Methods

• Forms the basis for a number of signed
multiplication algorithms

• Based upon recoding the multiplier, y, to a recoded
value, z.

• The multiplicand remains unchanged.
• Uses signed digit (SD) encoding:
• Each digit can assume three values instead of just 2:

+1, 0, and -1, encoded as 1, 0, and 1. This is
known as signed digit (SD) notation.

6-55 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

A 2’s Complement Integer’s Value
Can Be Represented as:

value y y Ym
m

i
i

i

m

() = − +− −

=

−

∑1
1

0

2

2 2 (Eq 6.26)

This means that the value can be computed by adding the
weighted values of all the digits except the most significant,
and subtracting that digit.

6-56 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Example: Represent -5 in SD Notation

− =
= = − + + + = −

5 1011

1011 1011 8 0 2 1 5

 in 2's Complement Notation

 in SD Notation

6-57 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

The Booth Algorithm (Sometimes Known
as “Skipping Over 1’s.”)

Consider -1 = 1111. In SD Notation this can

be represented as 2 1 100014 − =
The Booth method is:
1. Working from lsb to msb, replace each 0 digit of the original
number with 0 in the recoded number until a 1 is encountered.
2. When a 1 is encountered, insert a 1 in that position in the
recoded number, and skip over any succeeding 1's until a 0 is
encountered.
3. Replace that 0 with a 1. If you encounter the msb without
encountering a 0, stop and do nothing.

6-58 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Example of Booth Recoding

0011 1101 1001 512 256 128 64 16 8 1 985

0100 0110 1011 1024 64 32 8 2 1 985

= + + + + + + =

↓ ↓
= − + − + − =

6-59 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Tbl 6.4 Booth Recoding Table

y y z Value Situation
i i i−

+
−

1

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 0

String of 0's

End of string of 1's

Begin string of 1's

String of 1's

Consider pairs of numbers, yi, yi-1. Recoded value is zi.

Algorithm can be done in parallel.
Examine the example of multiplication 6.11 in text.

6-60 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Recoding Using Bit-Pair Recoding

• Booth method may actually increase number of multiplies.
• Consider pairs of digits, and recode each pair into 1 digit.
• Derive Table 6.5, pg. 279, on the blackboard to show how bit-

pair recoding works.
• Demonstrate Example 6.13 on the blackboard as an example of

multiplication using bit-pair recoding.
• There are many variants on this approach.

6-61 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Digital Division: Terminology and
Number Sizes

• A dividend is divided by a divisor to get a quotient and a
remainder

• A 2m digit dividend divided by an m digit divisor does
not necessarily give an m digit quotient and remainder

• If the divisor is 1, for example, an integer quotient is the
same size as the dividend

• If a fraction D is divided by a fraction d, the quotient is
only a fraction if D<d

• If D≥d, a condition called divide overflow occurs in
fraction division

6-62 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 6.9 Unsigned Binary Divide
Hardware

• 2m-bit dividend
register

• m-bit divisor
• m-bit quotient
• Divisor can be

subtracted from
dividend or not

Load
0

Positive
result

Subtractor

Divisor register

Quotient left shift register

Dividend left shift register

6-63 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Use of Division Hardware for Integer
Division

1) Put dividend in lower half of register and clear upper half.
Put divisor in divisor register. Initialize quotient bit counter
to zero.

2) Shift dividend register left one bit.
3) If difference positive, shift 1 into quotient and replace

upper half of dividend by difference. If negative, shift 0 into
quotient.

4) If fewer than m quotient bits, repeat from 2.
5) m bit quotient is an integer, and an m bit integer remainder

is in upper half of dividend register.

6-64 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Use of Division Hardware for Fraction
Division

1) Put dividend in upper half of dividend register and clear
lower half. Put divisor in divisor register. Initialize quotient bit
counter to zero.

2) If difference positive, report divide overflow.
3) Shift dividend register left one bit.
4) If difference positive, shift 1 into quotient and replace upper

part of dividend by difference. If negative, shift 0 into the
quotient.

5) If fewer than m quotient bits, repeat from 3.
6) m bit quotient has binary point at the left, and remainder is in

upper part of dividend register.

6-65 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Integer Binary Division Example:
D = 45, d = 6, q = 7, r = 3

 D 0 0 0 0 0 0 1 0 1 1 0 1
 d 0 0 0 1 1 0
Init. D 0 0 0 0 0 1 0 1 1 0 1 -
 d 0 0 0 1 1 0
diff(-) D 0 0 0 0 1 0 1 1 0 1 - - q 0
 d 0 0 0 1 1 0
diff(-) D 0 0 0 1 0 1 1 0 1 - - - q 0 0
 d 0 0 0 1 1 0
diff(-) D 0 0 1 0 1 1 0 1 - - - - q 0 0 0
 d 0 0 0 1 1 0
diff(+) D 0 0 1 0 1 0 1 - - - - - q 0 0 0 1
 d 0 0 0 1 1 0
diff(+) D 0 0 1 0 0 1 - - - - - - q 0 0 0 1 1
 d 0 0 0 1 1 0
diff(+) rem. 0 0 0 0 1 1 q 0 0 0 1 1 1

6-66 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 6.10 Parallel Array Divider

R := (c → D:
 ¬c → (D-d-bi) mod 2):

Borrow always
computed

d1

q1

q2

0

0

0qm

r1 r2 rm

D1 d2 D2 dm Dm Dm+1 D2m

D

R

d

d

bo

c

bi

c

6-67 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Branching on Arithmetic Conditions

• An ALU with two m-bit operands produces more than just an
m-bit result

• The carry from the left bit and the true/false value of 2’s
complement overflow are useful

• There are 3 common ways of using outcome of compare
(subtract) for a branch condition

 1) Do the compare in the branch instruction
 2) Set special condition code bits and test them in the branch
 3) Set a general register to a comparison outcome and branch

on this logical value

6-68 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Drawbacks of Condition Codes

• Condition codes are extra processor state; set and overwritten
by many instructions

• Setting and use of CCs also introduces hazards in a pipelined
design

• CCs are a scarce resource; they must be used before being set
again

• The PowerPC has 8 sets of CC bits

• CCs are processor state that must be saved and restored
during exception handling

6-69 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Drawbacks of Comparison in
Branch and Set General Register

• Branch instruction length: it must specify 2 operands to
be compared, branch target, and branch condition
(possibly place for link)

• Amount of work before branch decision: it must use the
ALU and test its output—this means more branch delay
slots in pipeline

• Setting a general register to a particular outcome of a
compare, say ≤ unsigned, uses a register of 32 or more
bits for a true/false value

6-70 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Use of Condition Codes: MC68000

• The HLL statement:
if (A > B) then C = D

 translates to the MC68000 code:
 For 2’s comp. A and B For unsigned A and B
 MOVE.W A, D0 MOVE.W A, D0

 CMP.W B, D0 CMP.W B, D0

 BLE Over BLS Over

 MOVE.W D, C MOVE.W D, C

Over: . . . Over: . . .

6-71 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Standard Condition Codes: NZVC

• Assume compare does the subtraction s = x - y
• N: negative result, sm-1 = 1
• Z: zero result, s = 0
• V: 2’s complement overflow, xm-1ym-1sm-1 + xm-1ym-1sm-1

• C: carry from leftmost bit position, sm = 1
• Information in N, Z, V, and C determines several signed &

unsigned relations of x and y

6-72 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Correspondence of Conditions and
NZVC Bits

Condition Unsigned Integers Signed Integers
carry out C C
overflow C V
negative n.a. N
 > C⋅Z (N⋅V+N⋅V)⋅Z
 ≥ C N⋅V+N⋅V
 = Z Z
 ≠ Z Z
 ≤ C+Z (N⋅V+N⋅V)+Z
 < C N⋅V+N⋅V

6-73 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Branches That Do Not Use
Condition Codes

• SRC compares a single number to zero
• The simple comparison can be completed in pipeline stage 2
• The MIPS R2000 compares 2 numbers using a branch of the

form: bgtu R1, R2, Lbl
• Different branch instructions are needed for each signed or

unsigned condition
• The MIPS R2000 also allows setting a general register to 1 or 0

on a compare outcome
sgtu R3, R1, R2

6-74 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

ALU Logical, Shift, and Rotate
Instructions

• Shifts are often combined with logic to extract bit fields
from, or insert them into, full words

• A MC68000 example extracts bits 30..23 of a 32-bit word
(exponent of a floating-point number)

 MOVE.L D0, D1 ;Get # into D1

 ROL.L #9, D1 ;exponent to bits 7..0

 ANDI.L #FFH, D1 ;clear bits 31..8

• MC68000 shifts take 8 + 2n clocks, where n = shift count, so
ROL.L #9 is better then SHR.L #23 in the above
example

6-75 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Types and Speed of Shift Instructions

• Rotate right is equivalent to rotate left with a different
shift count

• Rotates can include the carry or not
• Two right shifts, one with sign extend, are needed to

scale unsigned and signed numbers
• Only a zero fill left shift is needed for scaling
• Shifts whose execution time depends on the shift count

use a single-bit ALU shift repeatedly, as we did for SRC
in Chap. 4

• Fast shifts, important for pipelined designs, can be done
with a barrel shifter

6-76 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 6.11 A N × N Bit Crossbar Design
for Barrel Rotator

Shift
count

D
ec

od
er

y0

x0

x1

x2

x - input
y - output

x3

x4

x5

y1 y2 y3 y4 y5

6-77 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Properties of the Crossbar Barrel
Shifter

• There is a 2 gate delay for any length shift
• Each output line is effectively an n way multiplexer for shifts of

up to n bits
• There are n2 3-state drivers for an n bit shifter

• For n = 32, this means 1024 3-state drivers

• For 32 bits, the decoder is 5 bits to 1 out of 32
• The minimum delay but large number of gates in the crossbar

prompts a compromise:
the logarithmic barrel shifter

6-78 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 6.12 Barrel Shifter with a
Logarithmic Number of Stages

Shift count

Input word

Output word

x0 x1 x2 x29 x30 x31

One shift/
bypass cell

Shift/bypass

y0 y1 y2 y29 y30 y31

Bypass/shift 1 bit right

Bypass/shift 2 bits right

Bypass/shift 4 bits right

Bypass/shift 8 bits right

Bypass/shift 16 bits right

s4 s3 s2 s1 s0

6-79 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Elements of a Complete ALU

• In addition to the arithmetic hardware, there must be a
controller for multistep operations, such as series parallel
multiply

• The shifter is usually a separate unit, and may have lots of
gates if it is to be fast

• Logic operations are usually simple
• The arithmetic unit may need to produce condition codes as

well as a result number
• Multiplexers select the result and condition codes from the

correct subunit

6-80 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 6.13 A Possible Design
for an ALU

x

n n

y

Condition codes

Multiplexer

ShifterLogic

Multiplexer
Control

Arithmetic

Opcode

Shift count

n

z

6-81 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Floating-Point Preliminaries:
Scaled Arithmetic

• Software can use arithmetic with a fixed binary point position,
say left end, and keep a separate scale factor e for a number
f×2e

• Add or subtract on numbers with same scale is simple, since
f×2e + g×2e = (f+g)×2e

• Even with same scale for operands, scale of result is different
for multiply and divide

 (f×2e)⋅(g×2e) = (f⋅g)×22e; (f×2e)÷(g×2e) = f÷g
• Since scale factors change, general expressions lead to a

different scale factor for each number—floating-point
representation

6-82 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 6.14 Floating-Point
Number Format

• s is sign, e is exponent, and f is significand
• We will assume a fraction significand, but some

representations have used integers

s

Sign

e f

me

1 + me + mf = m, Value(s, e, f) = (–1)s × f × 2e

m bits

1 mf

Exponent Fraction

6-83 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Signs in Floating-Point Numbers

• Both significand and exponent have signs
• A complement representation could be used for f, but sign

magnitude is most common now
• The sign is placed at the left instead of with f so test for

negative always looks at left bit
• The exponent could be 2’s complement, but it is better to

use a biased exponent
• If -emin ≤ e ≤ emax, where emin, emax > 0, then
 e = emin + e is always positive, so e replaced by e
• We will see that a sign at the left, and a positive exponent

left of the significand helps compare

^ ^

6-84 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Exponent Base and Floating Point
Number Range

• In a floating point format using 24 out of 32 bits for
significand, 7 would be left for exponent

• A number x would have a magnitude 2-64≤x≤263, or about
10-19≤x≤1019

• For more exponent range, bits of significand would have
to be given up with loss of accuracy

• An alternative is an exponent base >2
• IBM used exponent base 16 in the 360/370 series for a

magnitude range about 10-75≤x≤1075

• Then 1 unit change in e corresponds to a binary point
shift of 4 bits

6-85 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Normalized Floating-Point Numbers

• There are multiple representations for a floating-point
number

• If f1 and f2 = 2df
1 are both fractions and e2 = e1 - d, then

(s, f1, e1) and (s, f2, e2) have same value
• Scientific notation example: 0.819 × 103 = 0.0819 × 104

• A normalized floating-point number has a leftmost digit
nonzero (exponent small as possible)

• With exponent base b, this is a base-b digit: for the IBM
format the leftmost 4 bits (base 16) are ≠0

• Zero cannot fit this rule; usually written as all 0s
• In normal base 2, left bit =1, so it can be left out

• So-called hidden bit

6-86 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Comparison of Normalized Floating
Point Numbers

• If normalized numbers are viewed as integers, a biased
exponent field to the left means an exponent unit is more
than a significand unit

• The largest magnitude number with a given exponent is
followed by the smallest one with the next higher
exponent

• Thus normalized FP numbers can be compared for
<, ≤, >, ≥, =, ≠ as if they were integers

• This is the reason for the s,e,f ordering of the fields and
the use of a biased exponent, and one reason for
normalized numbers

6-87 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 6.15 IEEE Single-Precision
Floating Point Format

• Exponent bias is 127 for normalized #s

 e e Value Type
255 none none Infinity or NaN
254 127 (-1)s×(1.f1f2...)×2127 Normalized

 2 -125 (-1)s×(1.f1f2...)×2-125 Normalized
 1 -126 (-1)s×(1.f1f2...)×2-126 Normalized
 0 -126 (-1)s×(0.f1f2...)×2-126 Denormalized

^

s ê f1f2 . . . f23

sign exponent f ract ion

1 8 9 310

6-88 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Special Numbers in IEEE Floating
Point

• An all-zero number is a normalized 0
• Other numbers with biased exponent e = 0 are called

denormalized
• Denorm numbers have a hidden bit of 0 and an exponent

of -126; they may have leading 0s
• Numbers with biased exponent of 255 are used for ±∞

and other special values, called NaN (not a number)
• For example, one NaN represents 0/0

6-89 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 6.16 IEEE Standard,
Double-Precision, Binary

Floating Point Format

• Exponent bias for normalized numbers is 1023
• The denorm biased exponent of 0 corresponds to an

unbiased exponent of -1022
• Infinity and NaNs have a biased exponent of 2047
• Range increases from about 10-38≤|x|≤1038 to about

10-308≤|x|≤10308

s ê f1f2 . . . f52

sign exponent f ract ion

1 11 63120

6-90 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Decimal Floating-Point Add and
Subtract Examples

 Operands Alignment Normalize & round
 6.144 ×102 0.06144 ×104 1.003644 ×105

+9.975 ×104 +9.975 ×104 + .0005 ×105

 10.03644 ×104 1.004 ×105

 Operands Alignment Normalize & round
 1.076 ×10-7 1.076 ×10-7 7.7300 ×10-9

 -9.987 ×10-8 -0.9987 ×10-7 + .0005 ×10-9

 0.0773 ×10-7 7.730 ×10-9

6-91 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Floating Add, FA, and Floating
Subtract, FS, Procedure

Add or subtract (s1, e1, f1) and (s2, e2, f2)
1) Unpack (s, e, f); handle special operands
2) Shift fraction of number with smaller exponent right by

|e1 - e2| bits
3) Set result exponent er = max(e1, e2)
4) For FA and s1 = s2 or FS and s1 ≠ s2, add significands,

otherwise subtract them
5) Count lead zeros, z; carry can make z = -1; shift left z bits

or right 1 bit if z = -1
6) Round result, shift right, and adjust z if rounding overflow

occurs
7) er ← er - z; check over- or underflow; bias and pack

6-92 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 6.17 Hardware Structure for
Floating-Point Add and Subtract

• Adders for
exponents and
significands

• Shifters for
alignment and
normalize

• Multiplexers for
exponent and
swap of
significands

• Lead zeros
counter

f1

mf mf

mf

me

mz

mf + rounding bits

mf + rounding bits

mf

mf

me

me

sr fr

me

e1

s1

s2

FA/FS

me

e2

f2e1

me

Sign

|e1 – e2|

me

e2

Exponent
subtractor

Swap

Alignment
shifter

Significand
adder/subtractor

Lead zeros
counter

Normalize
and round

Subtract
and bias

Select

Sign
computation

Subtract

Sign

er

6-93 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Decimal Floating-Point Examples for
Multiply and Divide

• Multiply fractions and add exponents

Sign, fraction & exponent Normalize & round
 (-0.1403 ×10-3) -0.4238463 ×102

×(+0.3021 ×106) -0.00005 ×102

 -0.04238463 ×10-3+6 -0.4238 ×102

Sign, fraction & exponent Normalize & round
 (-0.9325 ×102) +0.9306387 ×109

÷(-0.1002 ×10-6) +0.00005 ×109

 +9.306387 ×102-(-6) +0.9306 ×109

• Divide fractions and subtract exponents

6-94 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Floating-Point Multiply of
Normalized Numbers

Multiply (sr, er, fr) = (s1, e1, f1)×(s2, e2, f2)
1) Unpack (s, e, f); handle special operands
2) Compute sr = s1⊕ s2; er = e1+e2; fr = f1×f2
3) If necessary, normalize by 1 left shift and subtract 1

from er; round and shift right if rounding overflow occurs
4) Handle overflow for exponent too positive and underflow

for exponent too negative
5) Pack result, encoding or reporting exceptions

6-95 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Floating-Point Divide of
Normalized Numbers

Divide (sr, er, fr) = (s1, e1, f1)÷(s2, e2, f2)
1) Unpack (s, e, f); handle special operands
2) Compute sr = s1⊕ s2; er = e1- e2; fr = f1÷f2
3) If necessary, normalize by 1 right shift and add 1 to er; round

and shift right if rounding overflow occurs
4) Handle overflow for exponent too positive and underflow for

exponent too negative
5) Pack result, encoding or reporting exceptions

6-96 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Chapter 6 Summary

• Digital number representations and algebraic tools for the
study of arithmetic

• Complement representation for addition of signed numbers
• Fast addition by large base and carry lookahead
• Fixed point multiply and divide overview
• Nonnumeric aspects of ALU design
• Floating-point number representations
• Procedures and hardware for floating-point addition and

subtraction
• Floating-point multiply and divide procedures

