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Chapter 6: Computer Arithmetic
and the Arithmetic Unit

Topics

6.1 Number Systems and Radix Conversion
6.2 Fixed-Point Arithmetic
6.3 Seminumeric Aspects of ALU Design
6.4 Floating-Point Arithmetic
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Digital Number Systems

• Digital number systems have a base or radix b
• Using positional notation, an m-digit base b number is 

written
x = xm-1 xm-2 ... x1 x0

0 ≤ xi ≤ b-1, 0 ≤ i < m
• The value of this unsigned integer is

∑
i=0

m-1
xi⋅bivalue(x) = Eq. 6.1
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Range of Unsigned m Digit Base b 
Numbers

• The largest number has all of its digits equal to b-1, the largest 
possible base b digit

• Its value can be calculated in closed form

xmax = ∑
i=0

m-1
(b-1) ⋅bi = (b-1) ⋅ ∑

i=0

m-1
bi = bm - 1

• An important summation—geometric series

∑
i=0

m-1
bi =

bm - 1
b - 1

Eq. 6.2

Eq. 6.3
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Radix Conversion: General Matters

• Converting from one number system to another involves 
computation

• We call the base in which calculation is done c and the 
other base b

• Calculation is based on the division algorithm
  — For integers a and b, there exist integers q and r such 

that  a = q⋅b + r, with 0 ≤ r ≤ b-1
• Notation:
                         q = a/b
                          r = a mod b
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Digit Symbol Correspondence 
Between Bases

• Each base has b (or c) different symbols to represent the digits
• If b < c, there is a table of b + 1 entries giving base c symbols 

for each base b symbol and b
• If the same symbol is used for the first b base c digits as for the 

base b digits, the table is implicit

• If c < b, there is a table of b + 1 entries giving a base c number 
for each base b symbol and b

• For base b digits ≥ c, the base c numbers have more than one digit

Base 12:   0  1  2   3    4    5    6     7    8     9     A    B    10

Base 3:     0  1  2  10  11  12  20  21  22  100  101 102  110
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Convert Base b Integer to 
Calculator’s Base, c

1) Start with base b x = xm-1 xm-2 ... x1 x0

2) Set x = 0 in base c
3) Left to right, get next symbol xi

4) Lookup base c number Di for symbol xi

5) Calculate in base c:  x = x⋅b + Di

6) If there are more digits, repeat from step 3
• Example: convert 3AF16 to base 10

x = 0
x = 16x + 3 = 3
x = 16⋅3 + 10(= A) = 58
x = 16⋅58 + 15(= F) = 943



6-7 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan                           © 1997 V. Heuring and H. Jordan

Convert Calculator’s Base Integer to 
Base b

1) Let x be the base c integer
2) Initialize i = 0 and v = x & get digits right to left
3) Set Di = v mod b & v = v/b . Lookup Di to get xi

4) i = i + 1; If v ≠ 0, repeat from step 3
• Example: convert 356710 to base 12
          3587 ÷ 12 = 298 (rem = 11) ⇒  x0 = B
          298 ÷ 12 = 24 (rem = 10) ⇒  x1 = A
          24 ÷ 12 = 2 (rem = 0) ⇒  x2 = 0
          2 ÷ 12 = 0 (rem = 2) ⇒  x3 = 2
    Thus 358710 = 20AB12
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Fractions and Fixed-Point Numbers

• The value of the base b fraction .f-1f-2...f-m is the value of the 
integer f-1f-2...f-m divided by bm

• The value of a mixed fixed point number
                 xn-1xn-2...x1x0.x-1x-2...x-m

    is the value of the n+m digit integer
                 xn-1xn-2...x1x0x-1x-2...x-m

    divided by bm

• Moving radix point one place left divides by b
• For fixed radix point position in word, this is a right shift of word

• Moving radix point one place right multiplies by b
• For fixed radix point position in word, this is a left shift of word
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Converting Fraction to Calculator’s 
Base

• Can use integer conversion and divide result by bm

• Alternative algorithm
     1) Let base b number be .f-1f-2...f-m 
     2) Initialize f = 0.0 and i = -m
     3) Find base c equivalent D of fi

     4) f = (f + D)/b; i = i + 1
     5) If i = 0, the result is f. Otherwise repeat from 3
• Example: convert 4138 to base 10
          f = (0 + 3)/8 = 0.375
          f = (0.375 + 1)/8 = 0.171875
          f = (0.171875 + 4)/8 = 0.521484375
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Nonterminating Fractions

• The division in the algorithm may give a nonterminating 
fraction in the calculator’s base

• This is a general problem: a fraction of m digits in one 
base may have any number of digits in another base

• The calculator will normally keep only a fixed number of 
digits

• Number should make base c accuracy about that of base b

• This problem appears in generating base b digits of a 
base c fraction

• The algorithm can continue to generate digits unless 
terminated
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Convert Fraction from Calculator’s 
Base to Base b

1) Start with exact fraction f in base c
2) Initialize i = 1 and v = f
3) D-i = b⋅v; v = b⋅v - D-i; Get base b f-i for D-i

4) i = i + 1; repeat from 3 unless v = 0 or enough base b digits 
have been generated

• Example: convert 0.3110 to base 8
          0.31×8 = 2.48  ⇒   f-1 = 2
          0.48×8 = 3.84  ⇒   f-2 = 3
          0.84×8 = 6.72  ⇒   f-1 = 6
• Since 83 > 102, 0.2368 has more accuracy than 0.31

10
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Conversion Between Related Bases 
by Digit Grouping

• Let base b = ck; for example b = c2

• Then base b number x1x0 is base c number y3y2y1y0, where x1 
base b = y3y2 base c and    x0 base b = y1y0 base c

• Examples:   1021304 = 10 21 304 = 49C16

                            49C16 = 0100 1001 11002

                        1021304 = 01 00 10 01 11 002

      0100100111002 = 010 010 011 1002 = 22348
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Negative Numbers, Complements, 
and Complement Representations

We will:
• Define two complement operations
• Define two complement number systems

• Systems represent both positive and negative numbers

• Give a relation between complement and negate in a 
complement number system

• Show how to compute the complements
• Explain the relation between shifting and scaling a number by 

a power of the base
• Lead up to the use of complement number systems in signed 

addition hardware
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Complement Operations
for m-Digit Base b Numbers

• Radix complement of m-digit base b number x
xc = (bm - x) mod bm

• Diminished radix complement of x
xc = bm - 1 - x

• The complement of a number in the range 0≤x≤bm-1 is in 
the same range

• The mod bm in the radix complement definition makes 
this true for x = 0; it has no effect for any other value of x

• Specifically, the radix complement of 0 is 0
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Complement Number Systems

• Complement number systems use unsigned numbers to 
represent both positive and negative numbers

• Recall that the range of an m digit base b unsigned number is 
0≤x≤bm-1

• The first half of the range is used for positive, and the second 
half for negative, numbers

• Positive numbers are simply represented by the unsigned 
number corresponding to their absolute value
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Use of Complements to Represent 
Negative Numbers

• The complement of a number in the range from 0 to bm/2 
is in the range from  bm/2 to bm-1

• A negative number is represented by the complement of 
its absolute value

• There are an equal number (±1) of positive and negative 
number representations

• The ±1 depends on whether b is odd or even and whether 
radix complement or diminished radix complement is used

• We will assume the most useful case of even b
• Then radix complement system has one more negative 

representation
• Diminished radix complement system has equal numbers 

of positive and negative representations
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Reasons to Use Complement 
Systems for Negative Numbers

• The usual sign-magnitude system introduces extra symbols + 
and - in addition to the digits

• In binary, it is easy to map 0 ⇒ + and 1 ⇒ -
• In base b > 2, using a whole digit for the two values, + and - ,

is wasteful
• Most important, however, it is easy to do signed addition and 

subtraction in complement number systems
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Tbl 6.1  Complement Representations 
of Negative Numbers

• For even b, radix complement system represents one more 
negative than positive value

• While diminished radix complement system has 2 zeros but 
represents same number of positive and negative values

Radix Complement Diminished Radix Complement

Number NumberRepresentation Representation

0 0 0 0 or bm-1

0<x<bm/2 x 0<x<bm/2 x

-bm/2≤x<0 |x|c = bm - |x| |x|c = bm - 1 - |x|-bm/2<x<0
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Tbl 6.2   Base 2 Complement 
Representations

• In 1’s complement, 255 = 111111112 is often called -0
• In 2’s complement, -128 = 100000002 is a legal value, but trying 

to negate it gives overflow

8 Bit 2’s Complement 8 Bit 1’s Complement

Number NumberRepresentation Representation

0 0 0 0 or 255

0<x<128 x 0<x<128 x

-128≤x<0 256 - |x| 255 - |x|-127≤x<0
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Negation in Complement Number 
Systems

• Except for -bm/2 in the b’s comp. system, the negative of 
any m digit value is also m digits

• The negative of any number x, positive or negative, in 
the b’s or b-1’s complement system is obtained by 
applying the b’s or b-1’s complement operation to x, 
respectively

• The 2 complement operations are related by
xc = (xc + 1) mod bm

• Thus an easy way to compute one of them will give an 
easy way to compute both
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Digitwise Computation of the 
Diminished Radix Complement

• Using the geometric series formula, the b-1’s complement of x 
can be written

∑
i=0

m-1
(b-1) ⋅ bi -xc = bm-1-x = ∑

i=0

m-1
xi⋅ bi

∑
i=0

m-1
(b-1-xi) ⋅ bi=

• If 0≤xi≤b-1, then 0≤(b-1-xi)≤b-1, so last formula is 
just an m-digit base b number with each digit 
obtained from the corresponding digit of x

Eq. 6.9
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Table-Driven Calculation of 
Complements in Base 5 

• 4’s complement of 2013415 is
2431035

• 5’s complement of 2013415 is
2431035 + 1 = 2431045

• 5’s complement of 444445 is
000005 + 1 = 000015

• 5’s complement of 000005 is
• (444445 + 1) mod 55 = 000005

Base 5
Digit

4’s
Comp.

0

1

2

3

4

4

3

2

1

0
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Complement Fractions

• Since m digit fraction is same as m digit integer divided by 
bm, the bm in complement definitions corresponds to 1 for 
fractions

• Thus radix complement of x = .x-1x-2...x-m is
   (1-x) mod 1, where mod 1 means discard integer
• The range of fractions is roughly -1/2 to +1/2
• This can be inconvenient for a base other than 2
• The b’s comp. of a mixed number

x = xm-1xm-2...x1x0.x-1x-2...x-n   is  bm - x,
where both integer and fraction digits are subtracted
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Scaling Complement Numbers by 
Powers of the Base

• Roughly, multiplying by b corresponds to moving radix 
point one place right or shifting number one place left

• Dividing by b roughly corresponds to a right shift of the 
number or a radix point move to the left one place

• There are 2 new issues for complement numbers:
    1) What is new left digit on right shift?
    2) When does a left shift overflow?
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Right Shifting a Complement Number 
to Divide by b

• For positive xm-1xm-2...x1x0, dividing by b corresponds to 
right shift with zero fill

0xm-1xm-2...x1

• For negative xm-1xm-2...x1x0, dividing by b corresponds to 
right shift with b-1 fill

(b-1)xm-1xm-2...x1

• This holds for both b’s and b-1’s comp. systems
• For even b, the rule is: fill with 0 if xm-1 < b/2 and fill with 

(b-1) if xm-1 ≥ b/2
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Complement Number Overflow on 
Left Shift to Multiply by b

• For positive numbers, overflow occurs if any digit other 
than 0 shifts off left end

• Positive numbers also overflow if the digit shifted into 
left position makes number look negative, i.e. digit ≥ b/2 
for even b

• For negative numbers, overflow occurs if any digit other 
than b-1 shifts off left end

• Negative numbers also overflow if new left digit makes 
number look positive, i.e. digit<b/2 for even b



6-27 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan                           © 1997 V. Heuring and H. Jordan

Left Shift Examples with Radix 
Complement Numbers

• Non-overflow cases:
     Left shift of 7628 = 6208, -1410 becomes -11210

     Left shift of 0318 = 3108, 2510 becomes 20010

• Overflow cases:
     Left shift of 2418 = 4108 shifts 2≠0 off left
     Left shift of 0418 = 4108 changes from + to -
     Left shift of 7138 = 1308 changes from - to +
     Left shift of 6628 = 6208 shifts 6≠7 off left
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Fixed-Point Addition and Subtraction

• If the radix point is in the same position in both operands, 
addition or subtraction act as if the numbers were integers

• Addition of signed numbers in radix complement system 
needs only an unsigned adder

• So we only need to concentrate on the structure of an
m-digit base b unsigned adder

• To see this let x be a signed integer and rep(x) be its 2’s 
complement representation

• The following theorem summarizes the result
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Theorem on Signed Addition in a 
Radix Complement System

• Theorem: Let s be unsigned sum of rep(x) & rep(y). Then s = 
rep(x+y), except for overflow

• Proof sketch: Case 1, signs differ, x≥0, y<0. Then x+y = x-|y| 
and s = (x+bm-|y|) mod bm. 

    If x-|y|≥0, mod discards bm, giving result, if
    x-|y|<0, then rep(x+y) = (b-| x-|y| |) mod bm.
   Case 3, x<0, y<0. s = (2bm - |x| - |y|) mod bm, which reduces to s 

= (bm - |x+y|) mod bm. This is rep(x+y) provided the result is in 
range of an m digit b’s comp. representation. If it is not, the 
unsigned s<bm/2 appears positive.
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Fig 6.1  Hardware Structure of a Base b 
Unsigned Adder

• Typical cell produces sj = (xj + yj + cj) mod b and cj+1 = (xj + yj + cj)/b
• Since xj, yj ≤ b-1, cj ≤ 1 implies cj+1 ≤ 1, and since c0 ≤ 1, all carries are ≤1, 

regardless of b

0 ≤ cj+1 ≤ 1

0 ≤ sj  < b

(xj +yj  +cj ) / b
(xj +yj  +cj )mod b

0 ≤ cj  ≤ 1

An m-digit base b unsigned adder

xj yj

cm cm–1

sm–1

xm–1 ym–1

c2 c1

s1

x1 y1

c0

s0

x0 y0

Base b digit adder
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Unsigned Addition Examples

• If result can only have a fixed number of 
bits, overflow occurs on carry from 
leftmost digit

• Carries are either 0 or 1 in all cases
• A table of sum and carry for each of the b2 

digit pairs, and one for carry-in = 1, define 
the addition

   12.034 = 6.187510    .9A2C16
    13.214 = 7.562510     .7BE216 Overflow
Carry 01 01         1 11 0   for 16-bit
Sum  31.304 = 13.7510    1.160E16 word

Base 4

+ 0     1     2    3

0 00  01  02  03

1 01  02  03  10

2 02  03  10  11

3 03  10  11  12
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Implementation Alternatives for 
Unsigned Adders

• If b = 2k, then each base b digit is equivalent to k bits

• A base b digit adder can be viewed as a logic circuit 
with 2k+1 inputs and k+1 outputs

k k

k

Base b=2k
digit adder

• This combinational logic 
circuit can be designed with 
as few as 2 levels of logic 

• PLA, ROM, and multi-level 
logic are also alternatives

• If 2 level logic is used, max. 
gate delays for m-digit base b 
unsigned adder is 2m s

x y

c0c1
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Two-Level Logic Design of a Base 4 
Digit Adder

• The base 4 digit x is represented by the 2 bits xb xa, y by 
yb ya, and s by sb sa

• sa is independent of xb and yb, c1 is given by ybyac0+
xaybc0+xbxac0+xbyac0+xbxaya+xaybya+xbyb, 

   while sb is a 12 input OR of 4 input ANDs

xb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
xa 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
yb 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
ya 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
c0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
c1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1
sb 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1
sa 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
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Fig 6.2   Base b Radix Complement 
Subtracter

• To do subtraction in the radix complement system, it is only 
necessary to negate (radix complement) the 2nd operand

• It is easy to take the diminished radix complement, and the 
adder has a carry-in for the +1

+ 1Base b adder

(b – 1)'s complement

x – y

x y
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Overflow Detection in Complement 
Add and Subtract

• We saw that all cases of overflow in complement addition 
came when adding numbers of like signs, and the result 
seemed to have the opposite sign

• For even b, the sign can be determined from the left digit of 
the representation

• Thus an overflow detector only needs xm-1, ym-1, sm-1, and an 
add/subtract control

• It is particularly simple in base 2
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Fig 6.3  2’s Complement
Adder/Subtracter

• A multiplexer to select y or its complement becomes 
an exclusive OR gate

cm cm–1

qm–1

FA

sm–1

xm–1 ym–1

c3 c2

q2

FA

s2

x2 y2

c1

q1

FA

s1

x1 y1

c0

q0

FA

Subtract
control

s0

x0 y0

r
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Speeding Up Addition with Carry 
Lookahead

• Speed of digital addition depends on carries
• A base b = 2k divides length of carry chain by k

• Two level logic for base b digit becomes complex quickly 
as k increases

• If we could compute the carries quickly, the full adders 
compute result with 2 more gate delays

• Carry lookahead computes carries quickly
• It is based on two ideas:

•   a digit position generates a carry
•   a position propagates a carry-in to the carry-out
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Binary Propagate and Generate 
Signals

• In binary, the generate for digit j is Gj = xj⋅yj

• Propagate for digit j is Pj = xj+yj

• Of course xj+yj covers xj⋅yj but it still corresponds to a carry out for a 
carry in

• Carries can then be written:  c1 = G0 + P0⋅c0

• c2 = G1 + P1⋅G0 + P1⋅P0⋅c0

• c3 = G2 + P2⋅G1 + P2⋅P1⋅G0 + P2⋅P1⋅P0⋅c0

• c4 = G3 + P3⋅G2 + P3⋅P2⋅G1 + P3⋅P2⋅P1⋅G0 + P3⋅P2⋅P1⋅P0⋅c0

• In words, the c2 logic is: c2 is one if digit 1 generates a carry, or if 
digit 0 generates one and digit 1 propagates it, or if digits 0 and 1 
both propagate a carry-in
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Speed Gains with Carry Lookahead

• It takes one gate to produce a G or P, two levels of gates 
for any carry, and 2 more for full adders

• The number of OR gate inputs (terms) and AND gate 
inputs (literals in a term) grows as the number of carries 
generated by lookahead

• The real power of this technique comes from applying it 
recursively

• For a group of, say, 4 digits an overall generate is
G10 = G3 + P3⋅G2 + P3⋅P2⋅G1 + P3⋅P2⋅P1⋅G0

• An overall propagate is P10 = P
3⋅P2⋅P1⋅P0
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Recursive Carry Lookahead Scheme

• If level 1 generates G1j and propagates P1j are defined for 
all groups j, then we can also define level 2 signals G2j and 
P2j over groups of groups

• If k things are grouped together at each level, there will be 
logkm levels, where m is the number of bits in the original 
addition

• Each extra level introduces 2 more gate delays into the 
worst case carry calculation

• k is chosen to trade off reduced delay against the 
complexity of the G and P logic

• It is typically 4 or more, but the structure is easier to see 
for k=2
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Fig 6.4  Carry Lookahead Adder for 
Group Size k = 2
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Fig 6.5  Digital Multiplication Schema
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Serial by Digit of Multiplier, Then by 
Digit of Multiplicand

• If c ≤ b-1 on the RHS of 9, then c ≤ b-1 on the LHS of 9 
because 0 ≤ pj+i, xi, yj ≤ b-1

1. for i := 0 step 1 until 2m-1
2. pi := 0;
3. for j := 0 step 1 until m-1
4. begin
5. c := 0;
6. for i := 1 step 1 until m-1
7. begin
8. pj+i := (pj+i + xi yj + c) mod b;
9. c := (pj+i + xi yj + c)/b;
10. end;
11. pj+m := c;
12. end;



6-44 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan                           © 1997 V. Heuring and H. Jordan

Fig 6.6  Parallel Array Multiplier for 
Unsigned Base b Numbers
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Operation of the Parallel Multiplier 
Array

• Each box in the array does the base b digit calculations 
pk(out) := (pk(in) + x y + c(in)) mod b and c(out) := (pk(in) + x 
y + c(in))/b

• Inputs and outputs of boxes are single base b digits, 
including the carries

• The worst case path from an input to an output is about 6m 
gates if each box is a 2 level circuit

• In base 2, the digit boxes are just full adders with an extra 
AND gate to compute xy
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Series Parallel Multiplication 
Algorithm

• Hardware multiplies the full multiplicand by one multiplier 
digit and adds it to a running product

• The operation needed is p := p + xyjbj

• Multiplication by bj is done by scaling xyj, shifting it left, 
or shifting p right, by j digits

• Except in base 2, the generation of the partial product xyj 
is more difficult than the shifted add

• In base 2, the partial product is either x or 0
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Fig 6.7  Unsigned Series Parallel 
Multiplication Hardware
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Steps for Using the Unsigned Series 
Parallel Multiplier

1) Clear product shift register p.
2) Initialize multiplier digit number j=0.
3) Form the partial product xyj.
4) Add partial product to upper half of p.
5) Increment j=j+1, and if j=m go to step 8.
6) Shift p right one digit.
7) Repeat from step 3.
8) The 2m digit product is in the p register.
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Multiply with Fixed Length Words: 
Integer and Fraction Multiply

• If words can store only m digits, and the radix point is in 
a fixed position in the word, 2 positions make sense

      integer: right end, and fraction: left end
• In integer multiply, overflow occurs if any of the upper m 

digits of the 2m-digit product ≠0
• In fraction multiply, the upper m digits are the most 

significant, and the lower m-digits are discarded or 
rounded to give an m-digit fraction
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Signed Multiplication

• The sign of the product can be computed immediately from 
the signs of the operands

• For complement numbers, negative operands can be 
complemented, their magnitudes multiplied, and the 
product recomplemented if necessary

• A complement representation multiplicand can be handled 
by a b’s complement adder for partial products and sign 
extension for the shifts

• A 2’s complement multiplier is handled by the formula for a 
2’s complement value: add all PP’s except last, subtract it.

value(x) = -xm-12m-1 + ∑xi2i

i=0

m-2
Eq. 6.25
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Fig 6.8  2’s Complement
Multiplier Hardware
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Steps for Using the 2’s 
Complement Multiplier Hardware

1) Clear the bit counter and partial product accumulator register.
2) Add the product (AND) of the multiplicand and rightmost 

multiplier bit.
3) Shift accumulator and multiplier registers right one bit.
4) Count the multiplier bit and repeat from 2 if count less than

m-1.
5) Subtract the product of the multiplicand and bit m-1 of the 

multiplier.

Note: bits of multiplier used at rate product bits produced
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Examples of 2’s Complement 
Multiplication

  -5/8 =    1. 0 1 1     6/8 =    0. 1 1 0
× 6/8 = × 0. 1 1 0   ×-5/8 = × 1. 0 1 1
pp0 0 0. 0 0 0   pp0 0 0. 1 1 0
acc. 0 0. 0 0 0 0 add and shift acc. 0 0. 0 1 1 0
pp1 1 1. 0 1 1   pp1 0 0. 1 1 0
acc. 1 1. 1 0 1 1 0 add and shift acc. 0 0. 1 0 0 1 0
pp2 1 1. 0 1 1   pp2 0 0. 0 0 0
acc. 1 1. 1 0 0 0 1 0 add and shift acc. 0 0. 0 1 0 0 1 0
pp3 0 0. 0 0 0   pp3 1 1. 0 1 0
res. 1 1. 1 0 0 0 1 0 add res. 1 1. 1 0 0 0 1 0

Negative multiplicand Negative multiplier
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Booth Recoding and Similar Methods

• Forms the basis for a number of signed 
multiplication algorithms

• Based upon recoding the multiplier, y, to a recoded 
value, z.

• The multiplicand remains unchanged.
• Uses signed digit (SD) encoding:
• Each digit can assume three values instead of just 2:

+1, 0, and -1, encoded as 1,  0, and 1. This is 
known as signed digit (SD) notation.
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A 2’s Complement Integer’s Value 
Can Be Represented as:

value y y Ym
m

i
i

i

m

( ) = − +− −

=

−

∑1
1

0

2

2 2            (Eq 6.26)

This means that the value can be computed by adding the 
weighted values of all the digits except the most significant, 
and subtracting that digit.
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Example: Represent -5 in SD Notation

− =
= = − + + + = −

5 1011

1011 1011 8 0 2 1 5

 in 2's Complement Notation

 in SD Notation
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The Booth Algorithm (Sometimes Known 
as “Skipping Over 1’s.”)

Consider -1 =  1111. In SD Notation this can

be represented as 2 1 100014 − =
The Booth method is:
1. Working from lsb to msb, replace each 0 digit of the original 
number with 0 in the recoded number until a 1 is encountered.
2. When a 1 is encountered, insert a 1 in that position in the 
recoded number, and skip over any succeeding 1's until a 0 is 
encountered.
3. Replace that 0 with a 1. If you encounter the msb without 
encountering a 0, stop and do nothing.
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Example of Booth Recoding

0011 1101 1001 512 256 128 64 16 8 1 985

0100 0110 1011 1024 64 32 8 2 1 985

= + + + + + + =

↓ ↓
= − + − + − =
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Tbl 6.4  Booth Recoding Table

y y z Value Situation
i i i−

+
−

1

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 0

String of 0's

End of string of 1's

Begin string of 1's

String of 1's

Consider pairs of numbers, yi, yi-1. Recoded value is zi.

Algorithm can be done in parallel.
Examine the example of multiplication 6.11 in text.
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Recoding Using Bit-Pair Recoding

• Booth method may actually increase number of multiplies.
• Consider pairs of digits, and recode each pair into 1 digit.
• Derive Table 6.5, pg. 279, on the blackboard to show how bit-

pair recoding works.
• Demonstrate Example 6.13 on the blackboard as an example of 

multiplication using bit-pair recoding.
• There are many variants on this approach.
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Digital Division: Terminology and 
Number Sizes

• A dividend is divided by a divisor to get a quotient and a 
remainder

• A 2m digit dividend divided by an m digit divisor does 
not necessarily give an m digit quotient and remainder

• If the divisor is 1, for example, an integer quotient is the 
same size as the dividend

• If a fraction D is divided by a fraction d, the quotient is 
only a fraction if D<d

• If D≥d, a condition called divide overflow occurs in 
fraction division
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Fig 6.9  Unsigned Binary Divide 
Hardware
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Use of Division Hardware for Integer 
Division

1) Put dividend in lower half of register and clear upper half. 
Put divisor in divisor register. Initialize quotient bit counter 
to zero.

2) Shift dividend register left one bit.
3) If difference positive, shift 1 into quotient and replace 

upper half of dividend by difference. If negative, shift 0 into 
quotient.

4) If fewer than m quotient bits, repeat from 2.
5) m bit quotient is an integer, and an m bit integer remainder 

is in upper half of dividend register.
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Use of Division Hardware for Fraction 
Division

1) Put dividend in upper half of dividend register and clear 
lower half. Put divisor in divisor register. Initialize quotient bit 
counter to zero.

2) If difference positive, report divide overflow.
3) Shift dividend register left one bit.
4) If difference positive, shift 1 into quotient and replace upper 

part of dividend by difference. If negative, shift 0 into the 
quotient.

5) If fewer than m quotient bits, repeat from 3.
6) m bit quotient has binary point at the left, and remainder is in 

upper part of dividend register.
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Integer Binary Division Example:
D = 45, d = 6, q = 7, r = 3

  D 0 0 0 0 0 0 1 0 1 1 0 1
  d 0 0 0 1 1 0
Init. D 0 0 0 0 0 1 0 1 1 0 1 -
  d 0 0 0 1 1 0
diff(-) D 0 0 0 0 1 0 1 1 0 1  - - q                 0
  d 0 0 0 1 1 0
diff(-) D 0 0 0 1 0 1 1 0 1  - -  - q              0 0
  d 0 0 0 1 1 0
diff(-) D 0 0 1 0 1 1 0 1  - -  -  - q           0 0 0
  d 0 0 0 1 1 0
diff(+) D 0 0 1 0 1 0 1  - -  -  -  - q        0 0 0 1
  d 0 0 0 1 1 0
diff(+) D 0 0 1 0 0 1  -  - -  -  -  - q     0 0 0 1 1
  d 0 0 0 1 1 0
diff(+) rem. 0 0 0 0 1 1   q  0 0 0 1 1 1
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Fig 6.10  Parallel Array Divider
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Branching on Arithmetic Conditions

• An ALU with two m-bit operands produces more than just an 
m-bit result

• The carry from the left bit and the true/false value of 2’s 
complement overflow are useful

• There are 3 common ways of using outcome of compare 
(subtract) for a branch condition

    1) Do the compare in the branch instruction
    2) Set special condition code bits and test them in the branch
    3) Set a general register to a comparison outcome and branch

on this logical value
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Drawbacks of Condition Codes

• Condition codes are extra processor state; set and overwritten 
by many instructions

• Setting and use of CCs also introduces hazards in a pipelined 
design

• CCs are a scarce resource; they must be used before being set 
again

• The PowerPC has 8 sets of CC bits

• CCs are processor state that must be saved and restored 
during exception handling



6-69 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan                           © 1997 V. Heuring and H. Jordan

Drawbacks of Comparison in 
Branch and Set General Register

• Branch instruction length: it must specify 2 operands to 
be compared, branch target, and branch condition 
(possibly place for link)

• Amount of work before branch decision: it must use the 
ALU and test its output—this means more branch delay 
slots in pipeline

• Setting a general register to a particular outcome of a 
compare, say ≤ unsigned, uses a register of 32 or more 
bits for a true/false value
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Use of Condition Codes: MC68000

• The HLL statement:
if (A > B) then C = D

    translates to the MC68000 code:
     For 2’s comp. A and B       For unsigned A and B
     MOVE.W  A, D0        MOVE.W  A, D0

     CMP.W   B, D0        CMP.W   B, D0

     BLE     Over         BLS     Over

     MOVE.W  D, C         MOVE.W  D, C

Over:     . . .      Over:     . . .
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Standard Condition Codes: NZVC

• Assume compare does the subtraction s = x - y
• N: negative result, sm-1 = 1
• Z: zero result, s = 0
• V: 2’s complement overflow, xm-1ym-1sm-1 + xm-1ym-1sm-1

• C: carry from leftmost bit position, sm = 1
• Information in N, Z, V, and C determines several signed & 

unsigned relations of x and y
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Correspondence of Conditions and 
NZVC Bits

Condition Unsigned Integers   Signed Integers
carry out     C       C
overflow       C       V
negative     n.a.       N
      >       C⋅Z        (N⋅V+N⋅V)⋅Z
      ≥         C           N⋅V+N⋅V
      =         Z       Z
      ≠         Z       Z
      ≤       C+Z        (N⋅V+N⋅V)+Z
      <         C           N⋅V+N⋅V
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Branches That Do Not Use
Condition Codes

• SRC compares a single number to zero
• The simple comparison can be completed in pipeline stage 2
• The MIPS R2000 compares 2 numbers using a branch of the 

form:  bgtu R1, R2, Lbl
• Different branch instructions are needed for each signed or 

unsigned condition
• The MIPS R2000 also allows setting a general register to 1 or 0 

on a compare outcome
sgtu R3, R1, R2
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ALU Logical, Shift, and Rotate 
Instructions

• Shifts are often combined with logic to extract bit fields 
from, or insert them into, full words

• A MC68000 example extracts bits 30..23 of a 32-bit word 
(exponent of a floating-point number)

  MOVE.L D0, D1   ;Get # into D1

  ROL.L  #9, D1   ;exponent to bits 7..0

  ANDI.L #FFH, D1 ;clear bits 31..8

• MC68000 shifts take 8 + 2n clocks, where n = shift count, so 
ROL.L #9 is better then SHR.L #23 in the above 
example
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Types and Speed of Shift Instructions

• Rotate right is equivalent to rotate left with a different 
shift count

• Rotates can include the carry or not
• Two right shifts, one with sign extend, are needed to 

scale unsigned and signed numbers
• Only a zero fill left shift is needed for scaling
• Shifts whose execution time depends on the shift count 

use a single-bit ALU shift repeatedly, as we did for SRC 
in Chap. 4

• Fast shifts, important for pipelined designs, can be done 
with a barrel shifter
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Fig 6.11  A N × N Bit Crossbar Design 
for Barrel Rotator
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Properties of the Crossbar Barrel 
Shifter

• There is a 2 gate delay for any length shift
• Each output line is effectively an n way multiplexer for shifts of 

up to n bits
• There are n2 3-state drivers for an n bit shifter

• For n = 32, this means 1024 3-state drivers

• For 32 bits, the decoder is 5 bits to 1 out of 32
• The minimum delay but large number of gates in the crossbar 

prompts a compromise:
the logarithmic barrel shifter
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Fig 6.12  Barrel Shifter with a 
Logarithmic Number of Stages
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Elements of a Complete ALU

• In addition to the arithmetic hardware, there must be a 
controller for multistep operations, such as series parallel 
multiply

• The shifter is usually a separate unit, and may have lots of 
gates if it is to be fast

• Logic operations are usually simple
• The arithmetic unit may need to produce condition codes as 

well as a result number
• Multiplexers select the result and condition codes from the 

correct subunit
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Fig 6.13  A Possible Design
for an ALU
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Floating-Point Preliminaries:
Scaled Arithmetic

• Software can use arithmetic with a fixed binary point position, 
say left end, and keep a separate scale factor e for a number 
f×2e

• Add or subtract on numbers with same scale is simple, since  
f×2e + g×2e = (f+g)×2e

• Even with same scale for operands, scale of result is different 
for multiply and divide

    (f×2e)⋅(g×2e) = (f⋅g)×22e;   (f×2e)÷(g×2e) = f÷g
• Since scale factors change, general expressions lead to a 

different scale factor for each number—floating-point 
representation
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Fig 6.14  Floating-Point
Number Format

• s is sign, e is exponent, and f is significand
• We will assume a fraction significand, but some 

representations have used integers
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1 mf
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Signs in Floating-Point Numbers

• Both significand and exponent have signs
• A complement representation could be used for f, but sign 

magnitude is most common now
• The sign is placed at the left instead of with f so test for 

negative always looks at left bit
• The exponent could be 2’s complement, but it is better to 

use a biased exponent
• If -emin ≤ e ≤ emax, where emin, emax > 0, then
    e = emin + e is always positive, so e replaced by e
• We will see that a sign at the left, and a positive exponent 

left of the significand helps compare

^ ^
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Exponent Base and Floating Point 
Number Range

• In a floating point format using 24 out of 32 bits for 
significand, 7 would be left for exponent

• A number x would have a magnitude 2-64≤x≤263, or about 
10-19≤x≤1019

• For more exponent range, bits of significand would have 
to be given up with loss of accuracy

• An alternative is an exponent base >2
• IBM used exponent base 16 in the 360/370 series for a 

magnitude range about 10-75≤x≤1075

• Then 1 unit change in e corresponds to a binary point 
shift of 4 bits
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Normalized Floating-Point Numbers

• There are multiple representations for a floating-point 
number

• If f1 and f2 = 2df
1 are both fractions and e2 = e1 - d, then

(s, f1, e1) and (s, f2, e2) have same value
• Scientific notation example: 0.819 × 103 = 0.0819 × 104

• A normalized floating-point number has a leftmost digit
nonzero (exponent small as possible)

• With exponent base b, this is a base-b digit: for the IBM 
format the leftmost 4 bits (base 16) are ≠0

• Zero cannot fit this rule; usually written as all 0s
• In normal base 2, left bit =1,  so it can be left out

• So-called hidden bit



6-86 Chapter 6—Computer Arithmetic and the Arithmetic Unit

Computer Systems Design and Architecture by V. Heuring and H. Jordan                           © 1997 V. Heuring and H. Jordan

Comparison of Normalized Floating 
Point Numbers

• If normalized numbers are viewed as integers, a biased 
exponent field to the left means an exponent unit is more 
than a significand unit

• The largest magnitude number with a given exponent is 
followed by the smallest one with the next higher 
exponent

• Thus normalized FP numbers can be compared for
<, ≤, >, ≥, =, ≠ as if they were integers

• This is the reason for the s,e,f ordering of the fields and 
the use of a biased exponent, and one reason for 
normalized numbers
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Fig 6.15  IEEE Single-Precision 
Floating Point Format

• Exponent bias is 127 for normalized #s

  e        e                  Value                         Type
255   none   none           Infinity or NaN
254    127      (-1)s×(1.f1f2...)×2127         Normalized
 ...        ...                    ...                               ...
  2     -125      (-1)s×(1.f1f2...)×2-125        Normalized
  1     -126      (-1)s×(1.f1f2...)×2-126        Normalized
  0     -126      (-1)s×(0.f1f2...)×2-126      Denormalized

^

s ê f1f2 . . . f23

sign exponent f ract ion

1 8 9 310
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Special Numbers in IEEE Floating 
Point

• An all-zero number is a normalized 0
• Other numbers with biased exponent e = 0 are called 

denormalized
• Denorm numbers have a hidden bit of 0 and an exponent 

of -126; they may have leading 0s
• Numbers with biased exponent of 255 are used for ±∞ 

and other special values, called NaN (not a number)
• For example, one NaN represents 0/0
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Fig 6.16  IEEE Standard,
Double-Precision, Binary

Floating Point Format

• Exponent bias for normalized numbers is 1023
• The denorm biased exponent of 0 corresponds to an 

unbiased exponent of -1022
• Infinity and NaNs have a biased exponent of 2047
• Range increases from about 10-38≤|x|≤1038 to about

10-308≤|x|≤10308

s ê f1f2 . . . f52

sign exponent f ract ion

1 11 63120
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Decimal Floating-Point Add and 
Subtract Examples

  Operands       Alignment Normalize & round
  6.144 ×102      0.06144 ×104    1.003644 ×105

+9.975 ×104    +9.975     ×104  +  .0005     ×105

       10.03644 ×104    1.004       ×105 

  Operands       Alignment Normalize & round
  1.076 ×10-7      1.076   ×10-7    7.7300   ×10-9

 -9.987 ×10-8     -0.9987 ×10-7  +  .0005   ×10-9

         0.0773 ×10-7    7.730     ×10-9 
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Floating Add, FA, and Floating 
Subtract, FS, Procedure

Add or subtract (s1, e1, f1) and (s2, e2, f2)
1) Unpack (s, e, f); handle special operands
2) Shift fraction of number with smaller exponent right by

|e1 - e2| bits
3) Set result exponent er = max(e1, e2)
4) For FA and s1 = s2 or FS and s1 ≠ s2, add significands, 

otherwise subtract them
5) Count lead zeros, z; carry can make z = -1; shift left z bits 

or right 1 bit if z = -1
6) Round result, shift right, and adjust z if rounding overflow 

occurs
7) er ← er - z; check over- or underflow; bias and pack
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Fig 6.17  Hardware Structure for 
Floating-Point Add and Subtract

• Adders for 
exponents and 
significands

• Shifters for 
alignment and 
normalize

• Multiplexers for 
exponent and 
swap of 
significands

• Lead zeros 
counter
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Decimal Floating-Point Examples for 
Multiply and Divide

• Multiply fractions and add exponents

Sign, fraction & exponent Normalize & round
  ( -0.1403         ×10-3)    -0.4238463 ×102

×(+0.3021         ×106 )    -0.00005     ×102

    -0.04238463 ×10-3+6    -0.4238       ×102

Sign, fraction & exponent Normalize & round
  ( -0.9325         ×102)   +0.9306387 ×109

÷( -0.1002         ×10-6 )   +0.00005     ×109

   +9.306387     ×102-(-6)   +0.9306       ×109

• Divide fractions and subtract exponents
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Floating-Point Multiply of
Normalized Numbers

Multiply (sr, er, fr) = (s1, e1, f1)×(s2, e2, f2)
1) Unpack (s, e, f); handle special operands
2) Compute sr = s1⊕ s2; er = e1+e2; fr = f1×f2
3) If necessary, normalize by 1 left shift and subtract 1

from er; round and shift right if rounding overflow occurs
4) Handle overflow for exponent too positive and underflow 

for exponent too negative
5) Pack result, encoding or reporting exceptions
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Floating-Point Divide of
Normalized Numbers

Divide  (sr, er, fr) = (s1, e1, f1)÷(s2, e2, f2)
1) Unpack (s, e, f); handle special operands
2) Compute sr = s1⊕ s2; er = e1- e2; fr = f1÷f2
3) If necessary, normalize by 1 right shift and add 1 to er; round 

and shift right if rounding overflow occurs
4) Handle overflow for exponent too positive and underflow for 

exponent too negative
5) Pack result, encoding or reporting exceptions
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Chapter 6 Summary

• Digital number representations and algebraic tools for the 
study of arithmetic

• Complement representation for addition of signed numbers
• Fast addition by large base and carry lookahead
• Fixed point multiply and divide overview
• Nonnumeric aspects of ALU design
• Floating-point number representations
• Procedures and hardware for floating-point addition and 

subtraction
• Floating-point multiply and divide procedures


