
EC362 Lab #6 

KURM ISA Machine Design 

The KURM ISA uses a 16-bit Big-Endian, byte-addressable, Harvard-style, load-store architecture. That is, 
the word length for both data and instruction memory is 16 bits, but physical memory is accessed using 
byte addresses with each memory access loading or storing two consecutive bytes.  

Because instructions are 16 bits in length, the program counter must be incremented by 2 to move to 
the next instruction. KURM consists of 16 general-purpose registers (R0-R15). Instructions specify 
register IDs using 4 bit values. Throughout this document, Rn refers to the register ID for register n.  

The program counter (PC) is an internal 16-bit register that cannot be directly accessed by any 
instruction except jmpl. Every instruction increments the program counter by 2 with the exception of 
branch (bra) and jump (jmpl), which alter the program counter in different ways.  

KURM is defined by the instruction set described in the table below. All instructions are one word in 
length with the format of each instruction as shown in the table.  

Instruction Meaning Op (15-12) Rs (11-8) Rt (7-4) Rd (3-0) 
and Rs,Rt,Rd Rd := Rs ∧ Rt 0000 0-15 0-15 0-15 
or Rs,Rt,Rd Rd := Rs ∨ Rt 0001 0-15 0-15 0-15 
add Rs,Rt,Rd Rd := Rs + Rt 0010 0-15 0-15 0-15 
sub Rs,Rt,Rd Rd := Rs - Rt 0011 0-15 0-15 0-15 
slt Rs,Rt,Rd Rd := 1 if Rs < Rt 

          0 otherwise 
0111 0-15 0-15 0-15 

addi Rs,Rt,offset Rt := Rs + offset 1000 0-15 0-15 offset 
bra Rs,offset If Rs ≠ 0 PC := PC + offset 1001 0-15 offset7-4 offset3-0 
lw Rs,Rt,Rd Rd := M[Rs + Rt] 1010 0-15 0-15 0-15 
sw Rs,Rt,Rd M[Rs + Rt] := Rd 1011 0-15 0-15 0-15 
jmpl Rs,Rt,offset Rt := PC + offset 

PC := Rs 
1111 0-15 0-15 offset 

 
The high four bits always specify the operation (opcode) while the low 12 bits specify registers or 
offsets, depending on the instruction type. All arithmetic operations (add, sub, slt, addi) treat the 
contents of registers and immediate values as 16 bit, two’s compliment numbers. An overflow value 
should be generated by these instructions. Conjunction and disjunction (and, or) treat Rs, Rt, and Rd as 
unsigned, 16 bit values.  

The jump and link (jmpl) instruction specifies two registers and a 4-bit, 2’s compliment word offset. 
When called, jmpl stores the current value of the PC plus the specified word offset value in Rt. Then, the 
value in Rs is loaded into the program counter. The objective of this instruction is to provide a branch 
mechanism that remembers where it branched from. For example, if the address of a function to be 
called is stored in R15, then jmpl R15, R14, 1 jumps to the address stored in R15 and stores the jump 



point plus 2 in R14. When the function is ready to return jmpl R14, Rk, 0 will return to the instruction 
after the call point. The value of Rk is arbitrary as is the offset for a typical return.  Note: be cautious as 
you add and subtract offsets to get new program counter values. Further realize that the length of the 
offset limits how far a program can branch using the bra and jmpl instructions. 

The example program shown below shows a simple program that calls a function to add two values. 
Assume memory location 0x0000 contains the address of the start of the function. Register R0 contains 
the address of a subroutine that is loaded into R15. The jmpl instruction jumps to the address in R15 and 
stores the address from the program counter plus 2 back into R15. 

In the function (labeled @R15 in the figure) R14 is used as a base address for obtaining two data values. 
These values are loaded from consecutive words in memory into registers, added together and stored 
back into memory at the memory location in R14 plus 2 words. So, when the function terminates, the 
original arguments are located in the two words at the memory location in R14 while the result is in the 
following memory location. The jmpl at the end of the subroutine returns to the address following the 
call site that was stored in R15. 

sub R0, R0, R0 // R0 := 0 
lw R0, R0, R15 // R15 := M[0] 
jmpl R15, R15, 1 // PC := R15; R15 := PC+2 
. . . 

@R15 : sub R0, R0, R0 // R0 := 0 
lw R0, R14, R3 // R3 := M[R14] 

 addi R0, R0, 2 // R0 := 2 
lw R0, R14, R4 // R4 := M[R14+2] 
add R3, R4, R5 // R5 := R3 + R4 
addi R0, R0, 2 // R0 := 4 
sw R0, R14, R5 // M[R14+4] := R5 
jmpl R15, R15, 0 // return 

 
This example exhibits how the jmpl command is used to implement function calls and how a register can 
be used to serve as a base address for finding arguments.  

Lab Problem: Develop a behavioral VHDL model for a single cycle CPU with a hard-wired controller that 
implements this KURM ISA design. Use the VHDL designs from labs 1-5 for the registers, the ALU, and 
any other logical components that you need.  You may need to modify the register file design to allow 
for three “sources” to implement the sw instruction. 

 


	EC362 Lab #6
	KURM ISA Machine Design

