
EE488A Introduction to Computer Architecture
Example Report

Hierarchical Designs in VHDL

CDR Charles B. Cameron

18 January 2006

Contents

1 Purpose 2

2 Equipment 2

3 Design 2
3.1 The D flip-flop mydff . 2
3.2 The Sample Package . 2
3.3 The D Register . 5

4 Observations 6
4.1 The D flip-flop mydff . 6
4.2 The D Register . 7

5 Conclusions 7

List of Figures

1 Output from a test of the D flip-flop mydff. 6
2 Simulation of the behavior of dreg 6

Listings

1 Module mydff.vhd . 3
2 Module samplepkg.vhd . 4
3 Module dreg.vhd . 5

1

1 Purpose

The purpose of this report is illustrate how to use VHDL to construct a hardware
design with a hierarchy of components. The report first describes the design of
a simple D flip-flop. It then describes a D register with a variable number of
bits, all based on the previously tested D flip-flop.

2 Equipment

Altera Quartus II software

3 Design

3.1 The D flip-flop mydff

Listing 1 on the following page gives a VHDL module which implements a D
flip-flop. Lines 1 and 2 are a standard reference to the standard logic definitions
of the IEEE library.

Lines 6 through 14 define the entity mydff as a device with three one-bit
inputs, reset, d, and clock, as well as two one-bit outputs, q and its active-low
equivalent qn.

Lines 17 through 37 provide the architecture body that defines the behavior
of this device. An internal signal q signal is defined; the outputs of the device
are based on this internal signal. In line 34, where output qn is defined, it is
necessary to use an internal signal rather than q itself on the right side of the
signal assignment because q is an output: it therefore cannot appear on the
right side of the assignment.

Most of the behavior of the D flip-flop is specified in the process statement.
Note that the process is sensitive to—and therefore re-evaluates its output when-
ever changes appear in—signals clock and reset.

The if-then-else logic specifies that reset is an asynchronous input. The
value q signal of the flip-flop is set to zero whenever the reset signal is asserted.
Otherwise, the flip-flop behaves synchronously, letting input d determine the
output q signal only if clock is rising.

There performance of this flip-flop is detailed in subsection 4.1 on page 6.

3.2 The Sample Package

Listing 2 on page 4 shows one method of using a design entity in a higher-level
design: encapsulate the subordinate part in a package. This package consists of
several component declarations, one of which is the mydff flip-flop design dis-
cussed in Section 3.1. The other is the dreg design discussed later, in Section 3.3
on page 5.

2

Listing 1: Module mydff.vhd

1 LIBRARY IEEE;
USE IEEE.std logic 1164.ALL;

−− This file implements a D flip−flop with asynchronous reset.

6 ENTITY mydff IS
PORT(

reset: IN STD LOGIC; −− active HIGH
d : IN STD LOGIC;
clock : IN STD LOGIC; −− positive−going edge−sensitive

11 q : OUT STD LOGIC; −− active HIGH
qn : OUT STD LOGIC −− active LOW

);
END mydff ;

16
ARCHITECTURE structure OF mydff IS

SIGNAL q signal: STD LOGIC;
BEGIN

−− Process Statement
21 PROCESS (clock,reset)

BEGIN
IF reset = ’1’ THEN −− active high transition

q signal <= ’0’;
ELSIF clock’EVENT AND clock=’1’THEN

26 q signal <= d;
ELSE

NULL;
END IF;

31 END PROCESS;

q <= q signal;
qn <= NOT q signal;

36
END structure ;

3

Listing 2: Module samplepkg.vhd

LIBRARY IEEE;
2 USE IEEE.std logic 1164.ALL;

PACKAGE samplepkg IS
COMPONENT mydff
PORT(

7 reset: IN STD LOGIC; −− active HIGH
d : IN STD LOGIC;
clock : IN STD LOGIC; −− positive−going edge−sensitive
q : OUT STD LOGIC; −− active HIGH
qn : OUT STD LOGIC −− active LOW

12);
END COMPONENT;

COMPONENT dreg
GENERIC(N : integer:= 4);

17 PORT(
reset : IN STD LOGIC;
clock : IN STD LOGIC;
d : IN STD LOGIC VECTOR(N−1 downto 0);
q, qn : OUT STD LOGIC VECTOR(N−1 downto 0)

22);
END COMPONENT;

END samplepkg ;

4

Listing 3: Module dreg.vhd

LIBRARY IEEE;
USE IEEE.std logic 1164.ALL;

3 LIBRARY WORK;
USE WORK.samplepkg.ALL;

ENTITY dreg IS
GENERIC(N : integer:= 4);

8 PORT(
reset : IN STD LOGIC;
clock : IN STD LOGIC;
d : IN STD LOGIC VECTOR(N−1 downto 0);
q, qn : OUT STD LOGIC VECTOR(N−1 downto 0)

13);
END dreg ;
ARCHITECTURE structure OF dreg IS
BEGIN

CreateDRegister:
18 FOR i IN 0 TO N−1 GENERATE

CreateDFF: mydff
PORT MAP (reset => reset,

clock => clock,
d => d(i),

23 q => q(i),
qn => qn(i)

);

END GENERATE;
28

END structure ;

The component declaration specifies the inputs and outputs of the compo-
nent. The higher-level design that refers to this package need not repeat the
component declaration.

3.3 The D Register

Listing 3 shows the design of a D register that uses the mydff flip-flop described
in Section 3.1 on page 2. It uses two library specifications. The IEEE library
is accessed to get the definitions of standard logic. The work library is accessed
to get the component declarations already described in Section 3.2 on page 2.

The generic parameter N has a default value of 4, which means the register
has four bits by default. This value could be changed in a higher-level design
that needs a different number of bits in the register. Except for the fact that
the register contains more than one bit, it behaves just like the mydff flip-flop
on which it is based and which it instantiates in lines 19–25. Merely referring
to it by name in the FOR. . . GENERATE statement (whose label is CreateDFF) is
enough to create N instances of it. The port map shows how each instance is
connected to the signals of the dreg design.

5

Date: January 18, 2006 db/mydff.sim.vwf Project: mydff

Page 1 of 1 Revision: mydff

resetdclockqnq 1.1 us-200.0 ns0 ps 320.0 ns 640.0 ns 960.0 ns 1.28 us 1.5 us
Figure 1: Output from a test of the D flip-flop mydff.

Date: January 19, 2006 db/dreg.sim.vwf Project: dreg

Page 1 of 1 Revision: dreg

resetclockdd[3]d[2]d[1]d[0]qq[3]q[2]q[1]q[0]qnqn[3]qn[2]qn[1]qn[0]
0 1 2 3 4 5 6 7 8 9 A B C D E F 0 10 1 2 3 4 5 6 7 8 9 A B C D E F 0F E D C B A 9 8 7 6 5 4 3 2 1 0 F

3.4 us0 ps 1.28 us 2.56 us 3.5 us
Figure 2: Simulation of the behavior of dreg

4 Observations

4.1 The D flip-flop mydff

Figure 1 shows that a reset pulse is applied to the D flip-flop mydff beginning at
time 0 and lasting until time 100 ns. This forces output q low and the active-low
equivalent qn high. Once the reset pulse has been removed, the flip-flop enters
synchronous mode, successfully transferring the value of input d to output q
shortly after each rising edge of the clock.

This pattern is disturbed when another reset pulse is applied at time 950 ns,
forcing q low shortly thereafter. The reset pulse is de-asserted once more at
time 1 µs and the flip-flop resumes synchronous operation thereafter.

Although Figure 1 doesn’t show it, the flip-flop takes 16.1 ns to respond to
the asynchronous reset pulse. It takes 16.1 ns to respond to the synchronous
clock signal, too.

6

4.2 The D Register

Figure 2 on the preceding page shows the simulated behavior of the D register.
Four-bit input D induces changes in four-bit outputs q and qn shortly after
a positive-going transition of clock. The timing analyzer of the Quartus II
software reports a 16.1 ns delay between these events, which puts an upper limit
of fmax = 1/16.1 ns = 62.1 MHz on the rate at which the register is clocked.

5 Conclusions

This report serves as an example of how to create a hierarchical hardware design
using Quartus II and VHDL. A low-level design, consisting of an entity definition
and an architecture definition, can be described in a package. The package
can be included in a higher-level design, permitting instances of the lower-level
design to be incorporated into the higher-level design by merely making suitable
connections to it.

The simulations show satisfactory behavior of the one-big D flip-flop mydff
and also of the higher-level D register dreg which uses mydff successfully.

The D register design dreg has been set up to be used in an even higher-level
design by providing it with a GENERIC parameter so that the number of bits in
it can be varied by the design that requires a D register.

7

	Purpose
	Equipment
	Design
	The D flip-flop mydff
	The Sample Package
	The D Register

	Observations
	The D flip-flop mydff
	The D Register

	Conclusions

