
EE488A Introduction to Computer Architecture

Example of a Shift Register Design

CDR Charles B. Cameron

6 April 2004

1 Purpose

The purpose of this report is to describe the design of a shift register with
parallel load, parallel read, and serial input.

2 Equipment

Altera MAX+PLUS II software

3 Design

Listing 1 gives a VHDL module which implements a shift register capable of
being loaded in parallel, read in parallel, and shifted from left to right (most
significant to least significant bit.) When operated in shift mode, there is also
a serial input bit.

The shift register makes use of a D flip-flop with an enable signal. (The
design file for this component is not listed in this report.)

The main body of the architecture instantiates N D flip-flops, connecting
them in an obvious way to signals x and y. Signal x holds the inputs to the
D flip-flops; signal y holds their outputs. This also illustrates the utility of the
Generate construct in VHDL.

The SR Operate process determines how to connect the inputs to each flip-
flop. If the Load signal is true, then the inputs are connected to Data; otherwise
they are connected to the output of the flip-flop to the left (the next most
significant bit in the register.) However, the most significant bit of all has no
left neighbor, so it is connected to the serial input SIn. The process illustrates
the utility of the Loop construct in VHDL. It is similar to the Generate construct
except that it appears inside a process.

The final section of the design connects the outputs of the flip-flops to the
outputs of the entity. The parallel outputs DataOut are connected to all the
flip-flops; the serial output SOut is connected only to the least significant bit.

1

Listing 1: Module sr.vhd

−− Module name: sr.vhd
−− Description: Implements an N−bit parallel−load shift register
−− The register can also be read in parallel
−− Input:

5 −− Data: N−bit data for parallel load
−− SIn: Shift data input (input to most significant bit)
−− Load: True for loading , false for shifting .
−− clk : clock
−− en = ’1’ when flip−flop is enabled , ’0’ otherwise

10 −− DataOut: parallel output data
−− SOut: serial output data (least significant bit)

LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;

15

ENTITY SR IS
GENERIC(N : integer:= 4);
PORT(

20 Data : IN STD LOGIC VECTOR(N−1 DOWNTO 0); −− N−bit load data
SIn : IN STD LOGIC; −− serial input data bit
Load : IN STD LOGIC; −− True for load, false for shift
clk : IN STD LOGIC; −− clock
en : IN STD LOGIC; −− true to enable shift register

25 DataOut : out STD LOGIC VECTOR(N−1 downto 0); −− parallel output data
SOut : OUT STD LOGIC −− serial output data

);
END SR;

30 ARCHITECTURE structure OF SR IS
SIGNAL x : STD LOGIC VECTOR(N−1 DOWNTO 0); −− input to each flip−flop
SIGNAL y : STD LOGIC VECTOR(N−1 DOWNTO 0); −− output of each flip−flop
COMPONENT myDFF

PORT(
35 D : IN STD LOGIC; −− data input

EN : IN STD LOGIC; −− active−HIGH enable
CLK : IN STD LOGIC; −− clock
Q : OUT STD LOGIC −− data output

);
40 END COMPONENT;

BEGIN
−− Declare N D flip−flops for use in the N−bit register
ShiftRegister :

45 FOR i IN N−1 DOWNTO 0 GENERATE
SRFlipFlops: myDFF

PORT MAP (
D => X(i),
clk => clk,

50 Q => y(i),
en => en

);
END GENERATE;

SR Operate:
55 PROCESS (clk, en)

BEGIN

2

−− Load the flip−flop if Load is true
IF Load = ’1’ THEN

60 ConnectLoadData:
FOR i IN N−1 DOWNTO 0 LOOP

X(i) <= Data(i); −− Take the data from the parallel input
END LOOP;

−− Otherwise operate it in shift mode
65 ELSE

ConnectShiftData:
FOR i IN N−2 DOWNTO 0 LOOP

X(i) <= Y(i+1); −− Take the data from the adjacent flip−flop
END LOOP;

70 X(N−1) <= SIn;
END IF;

END PROCESS SR Operate;
ConnectDataOut:

75 FOR i IN N−1 DOWNTO 0 GENERATE
DataOut(i) <= Y(i); −− Parallel output

END GENERATE;
SOut <= Y(0); −− Serial output

80 END structure ;

4 Observations

Figure 1 gives a simulation of the design in module sr.vhd.
Up to time 160 ns the enable input en is low so the register is inactive. At

time 200 ns the clock goes high and the binary value 1010 is loaded into the
register from the input Data, appearing at the parallel output DataOut after a
brief delay. At time 240 ns the Load signal is de-asserted and so the register is
in shift mode thereafter.

The values at signal SIn are accepted into the most significant bit of the
register at each rising clock edge and shifted to the right each cycle until time
920 ns, when the enable signal en is de-asserted. This serves to halt the shifting
process until en is true once again after time 1.12 µs.

At time 1.56 µs a new load signal causes the binary value 0110 to be loaded
into the register. Operation continues in this manner indefinitely.

5 Conclusions

Using Generate constructs (outside a process) and Loop constructs (inside a
process) in VHDL makes it possible to generate large amounts of hardware
without large amounts of code. The use of Generic parameters is helpful in
designing modules which can easily be made larger simply by changing the
parameters (N in this case.)

3

M
A

X
+p

lu
s

II
10

.2

F
ile

: C
:\C

A
M

E
R

O
N

\C
O

U
R

S
E

S
\E

E
48

8A
\L

A
B

S
\S

H
IF

T
R

E
G

IS
T

E
R

\S
R

.S
C

F

D
at

e:
 0

4/
06

/2
00

4
13

:3
6:

18

P
ag

e:
 1

[I]
cl

k

[I]
S

In

[I]
Lo

ad

[I]
en

[O
]S

O
ut

[I]
D

at
a

[O
]D

at
aO

ut

10
10

00
00

10
10

01
01

10
10

11
01

11
10

01
11

10
11

11
01

11
10

01
11

80
.0

ns
16

0.
0n

s
24

0.
0n

s
32

0.
0n

s
40

0.
0n

s
48

0.
0n

s
56

0.
0n

s
64

0.
0n

s
72

0.
0n

s
80

0.
0n

s
88

0.
0n

s
96

0.
0n

s
N

am
e:

M
A

X
+p

lu
s

II
10

.2

F
ile

: C
:\C

A
M

E
R

O
N

\C
O

U
R

S
E

S
\E

E
48

8A
\L

A
B

S
\S

H
IF

T
R

E
G

IS
T

E
R

\S
R

.S
C

F

D
at

e:
 0

4/
06

/2
00

4
13

:4
3:

17

P
ag

e:
 1

[I]
cl

k

[I]
S

In

[I]
Lo

ad

[I]
en

[O
]S

O
ut

[I]
D

at
a

[O
]D

at
aO

ut

10
10

01
10

01
11

00
11

00
01

00
00

01
10

00
11

-

1.
04

us
1.

12
us

1.
2u

s
1.

28
us

1.
36

us
1.

44
us

1.
52

us
1.

6u
s

1.
68

us
1.

76
us

1.
84

us
1.

92
us

2.
0u

N
am

e:

Figure 1: Simulation of module sr.vhd. The left-hand diagram is for the first
1 µs of the simulation; the right-hand diagram is the second 1 µs.

4

