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networking; this paper reviews recent studies and points to the need

for future research.
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ABSTRACT | Driven by the confluence between the need to

collect data about people’s physical, physiological, psycholog-

ical, cognitive, and behavioral processes in spaces ranging from

personal to urban and the recent availability of the technologies

that enable this data collection, wireless sensor networks for

healthcare have emerged in the recent years. In this review, we

present some representative applications in the healthcare

domain and describe the challenges they introduce to wireless

sensor networks due to the required level of trustworthiness

and the need to ensure the privacy and security of medical data.

These challenges are exacerbated by the resource scarcity that

is inherent with wireless sensor network platforms. We outline

prototype systems spanning application domains from physi-

ological and activity monitoring to large-scale physiological and

behavioral studies and emphasize ongoing research challenges.

KEYWORDS | Healthcare monitoring; medical information

systems; wireless sensor networks

I . INTRODUCTION

Driven by technology advances in low-power networked

systems and medical sensors, we have witnessed in recent

years the emergence of wireless sensor networks (WSNs)

in healthcare. These WSNs carry the promise of drastically
improving and expanding the quality of care across a wide

variety of settings and for different segments of the pop-

ulation. For example, early system prototypes have demon-

strated the potential of WSNs to enable early detection of

clinical deterioration through real-time patient monitoring

in hospitals [13], [43], enhance first responders’ capability

to provide emergency care in large disasters through

automatic electronic triage [24], [50], improve the life
quality of the elderly through smart environments [72],

and enable large-scale field studies of human behavior and

chronic diseases [45], [58].

At the same time, meeting the potential of WSNs in

healthcare requires addressing a multitude of technical

challenges. These challenges reach above and beyond the

resource limitations that all WSNs face in terms of limited

network capacity, processing and memory constraints, as
well as scarce energy reserves. Specifically, unlike appli-

cations in other domains, healthcare applications impose

stringent requirements on system reliability, quality of

service, and particularly privacy and security. In this

review paper, we expand on these challenges and provide

examples of initial attempts to confront them.

These examples include: 1) network systems for vital

sign monitoring that show that it is possible to achieve
highly reliable data delivery over multihop wireless

networks deployed in clinical environments [13], [43];

2) systems that overcome energy and bandwidth limita-

tions by intelligent preprocessing of measurements

collected by high data rate medical applications such as

motion analysis for Parkinson’s disease [49]; 3) an analysis

of privacy and security challenges and potential solutions
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in assisted living environments [72]; and 4) technologies
for dealing with the large-scale and inherent data quality

challenges associated with in-field studies [45], [58].

The remainder of the paper is structured as follows.

The next section reviews background material in medical

sensing and wireless sensor networks, while Section III

describes several promising healthcare applications for

wireless sensor networks. We highlight the key technical

challenges that wireless sensor networks face in the
healthcare domains in Section IV and describe represen-

tative research projects that address different aspects of

these challenges in Section V. We conclude with an outline

of the remaining challenges and future directions for

wireless sensor networks in healthcare.

II . BACKGROUND

A. Medical Sensing
There is a long history of using sensors in medicine and

public health [2], [74]. Embedded in a variety of medical

instruments for use at hospitals, clinics, and homes, sensors

provide patients and their healthcare providers insight into

physiological and physical health states that are critical to the

detection, diagnosis, treatment, and management of ailments.
Much of modern medicine would simply not be possible nor

be cost effective without sensors such as thermometers, blood

pressure monitors, glucose monitors, electrocardiography

(EKG), photoplethysmogram (PPG), electroencephalography

(EEG), and various forms of imaging sensors. The ability to

measure physiological state is also essential for interventional

devices such as pacemakers and insulin pumps.

Medical sensors combine transducers for detecting elec-
trical, thermal, optical, chemical, genetic, and other signals

with physiological origin with signal processing algorithms to

estimate features indicative of a person’s health status.

Sensors beyond those that directly measure health state have

also found use in the practice of medicine. For example,

location and proximity sensing technologies [39] are being

used for improving the delivery of patient care and workflow

efficiency in hospitals [22], tracking the spread of diseases by
public health agencies [28], and monitoring people’s health-

related behaviors (e.g., activity levels) and exposure to

negative environmental factors, such as pollution [58].

There are three distinct dimensions along which ad-

vances in medical sensing technologies are taking place. We

elaborate on each of the three in the paragraphs that follow.

• Sensing modality: Advances in technologies such as

microelectromechanical systems (MEMS), imag-
ing, and microfluidic and nanofluidic lab-on-chip

are leading to new forms of chemical, biological,

and genomic sensing and analyses available outside

the confines of a laboratory at the point of care. By

enabling new inexpensive diagnostic capabilities,

these sensing technologies promise to revolution-

ize healthcare both in terms of resolving public

health crisis due to infectious diseases [79] and
also enabling early detection and personalized

treatments.

• Size and cost: Most medical sensors have tradi-

tionally been too costly and complex to be used

outside of clinical environments. However, recent

advances in microelectronics and computing have

made many forms of medical sensing more widely

accessible to individuals at their homes, work
places, and other living spaces.

/ The first to emerge [2] were portable medical
sensors for home use (e.g., blood pressure and

blood glucose monitors). By enabling frequent

measurements of critical physiological data

without requiring visits to the doctor, these

instruments revolutionized the management

of diseases such as hypertension and diabetes.
/ Next, ambulatory medical sensors, whose small

form factor allowed them to be worn or car-

ried by a person, emerged [2]. Such sensors

enable individuals to continuously measure

physiological parameters while engaged rou-

tine life activities. Examples include wearable

heart rate and physical activity monitors and

Holter monitors. These devices target fitness
enthusiasts, health conscious individuals, and

observe cardiac or neural events that may not

manifest during a short visit to the doctor.

/ More recently, embedded medical sensors built

into assistive and prosthetic devices for geria-

trics [78] and orthotics [18] have emerged.

/ Finally, we are seeing the emergence of

implantable medical sensors for continuously
measuring internal health status and physio-

logical signals. In some cases, the purpose is to

continuously monitor health parameters that

are not externally available, such as intraoc-

cular pressure in glaucoma patients [20]. The

goal in other cases is to use the measurements

as triggers for physiological interventions that

prevent impending adverse events (e.g., epi-
leptic seizures [62]) and for physical assis-

tance (e.g., brain-controlled motor prosthetics

[47]). Given their implantable nature, these

devices face severe size constraints and need

to communicate and receive power wirelessly.

• Connectivity: Driven by advances in information

technology, medical sensors have become increas-

ingly interconnected with other devices. Early
medical sensors were largely isolated with inte-

grated user interfaces for displaying their measure-

ments. Subsequently, sensors became capable of

interfacing to external devices via wired interfaces

such as RS 232, USB, and Ethernet. More recently,

medical sensors have incorporated wireless con-

nections, both short range, such as Bluetooth,

Ko et al.: Wireless Sensor Networks for Healthcare

1948 Proceedings of the IEEE | Vol. 98, No. 11, November 2010



Zigbee, and near-field radios to communicate
wirelessly to nearby computers, personal digital

assistants, or smartphones, and long range, such as

WiFi or cellular communications, to communicate

directly with cloud computing services. Besides the

convenience of tetherless operation, such wireless

connections permit sensor measurements to be

sent to caregivers while patients go through their

daily work life away from home, thus heralding an
age of ubiquitous real-time medical sensing. We

note that with portable and ambulatory sensors,

the wired or wireless connectivity to cloud

computing resources is intermittent (e.g., connec-

tivity may be available only when the sensor is in

cellular coverage area or docked to the user’s home

computer). Therefore, such sensors can also record

measurements in nonvolatile memory for upload-
ing at a later time when they can be shared with

healthcare personnel and further analyzed.

B. Wireless Sensor Platforms
Recent years have witnessed the emergence of various

embedded computing platforms that integrate processing,

storage, wireless networking, and sensors. These embed-

ded computing platforms offer the ability to sense physical
phenomena at temporal and spatial fidelities that were

previously impractical. Embedded computing platforms

used for healthcare applications range from smartphones

to specialized wireless sensing platforms, known as motes,

that have much more stringent resource constraints in

terms of available computing power, memory, network

bandwidth, and available energy.

Existing motes typically use 8- or 16-b microcontrollers
with tens of kilobytes of RAM, hundreds of kilobytes of

ROM for program storage, and external storage in the form

of Flash memory. These devices operate at a few milliwatts

while running at about 10 MHz [61]. Most of the circuits

can be powered off, so the standby power can be about

1 �W. If such a device is active for 1% of the time, its

average power consumption is just a few microwatts

enabling long-term operation with two AA batteries.
Motes are usually equipped with low-power radios such

as those compliant with the IEEE 802.15.4 standard for

wireless sensor networks [33]. Such radios usually trans-

mit at rates between 10 and 250 Kb/s, consume about

20–60 mW, and their communication range is typically

measured in tens of meters [6], [71]. Finally, motes include

multiple analog and digital interfaces that enable them to

connect to a wide variety of commodity sensors.
These hardware innovations are paralleled by advances

in embedded operating systems [21], [30], component-

based programming languages [25], and networking pro-

tocols [9], [26].

In contrast to resource-constrained motes, smartphones

provide more powerful microprocessors, larger data stor-

age, and higher network bandwidth through cellular and

IEEE 802.11 wireless interfaces at the expense of higher
energy consumption. Their complementary characteristics

make smartphones and motes complementary platforms

suitable for different categories of healthcare applications,

which we discuss in the section that follows.

III . HEALTHCARE APPLICATIONS

Wirelessly networked sensors enable dense spatio–
temporal sampling of physical, physiological, psychologi-

cal, cognitive, and behavioral processes in spaces ranging

from personal to buildings to even larger scale ones. Such

dense sampling across spaces of different scales is resulting

in sensory information based healthcare applications

which, unlike those described in Section II-A, fuse and

aggregate information collected from multiple distributed

sensors. Moreover, the sophistication of sensing has
increased tremendously with the advances in cheap and

miniature, but high-quality sensors for home and personal

use, the development of sophisticated machine learning

algorithms that enable complex conditions such as stress,

depression, and addiction to be inferred from sensory

information, and finally the emergence of pervasive

Internet connectivity facilitating timely dissemination of

sensor information to caregivers.
In what follows, we introduce a list of healthcare

applications enabled by these technologies.

• Monitoring in mass-casualty disasters: While triage

protocols for emergency medical services already

exist [31], [70], their effectiveness can quickly

degrade with increasing number of victims. More-

over, there is a need to improve the assessment of

the first responders’ health status during such
mass-casualty disasters. The increased portability,

scalability, and rapidly deployable nature of

wireless sensing systems can be used to automat-

ically report the triage levels of numerous victims

and continuously track the health status of first

responders at the disaster scene more effectively.

• Vital sign monitoring in hospitals: Wireless sensing

technology helps address various drawbacks asso-
ciated with wired sensors that are commonly used

in hospitals and emergency rooms to monitor

patients [43]. The all too familiar jumble of wires

attached to a patient is not only uncomfortable for

patients leading to restricted mobility and more

anxiety, but is also hard to manage for the staff.

Quite common are deliberate disconnections of

sensors by tired patients and failures to reattach
sensors properly as patients are moved around in a

hospital and handed off across different units.

Wireless sensing hardware that are less noticeable

and have persistent network connectivity to back-

end medical record systems help reduce the

tangles of wires and patient anxiety, while also

reducing the occurrence of errors.
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• At-home and mobile aging: As people age, they
experience a variety of cognitive, physical, and

social changes that challenge their health, inde-

pendence, and quality of life [76]. Diseases such as

diabetes, asthma, chronic obstructive pulmonary

disease, congestive heart failure, and memory

decline are challenging to monitor and treat. These

diseases can benefit from patients taking an active

role in the monitoring process. Wirelessly net-
worked sensors embedded in people’s living spaces

or carried on the person can collect information

about personal physical, physiological, and behav-

ioral states and patterns in real-time and every-

where. Such data can also be correlated with social

and environmental context. From such Bliving

records,[ useful inferences about health and well-

being can be drawn. This can be used for self-
awareness and individual analysis to assist in

making behavior changes, and to share with

caregivers for early detection and intervention. At

the same time such procedures are effective and

economic ways of monitoring age-related illnesses.

• Assistance with motor and sensory decline: Another

application of wireless networked sensing is to

provide active assistance and guidance to patients
coping with declining sensory and motor capabili-

ties. We are seeing the emergence of new types of

intelligent assistive devices that make use of infor-

mation about the patient’s physiological and physical

state from sensors built in the device, worn or even

implanted on the user’s person, and embedded in the

surroundings. These intelligent assistive devices can

not only tailor their response to individual users and
their current context, but also provide the user and

their caregivers crucial feedback for longer term

training. Traditional assistive devices such as canes,

crutches, walkers, and wheel chairs can fuse

information from built-in and external sensors to

provide the users with continual personalized

feedback and guidance towards the correct usage of

the devices. Such devices can also adapt the physical
characteristics of the device with respect to the

context and a prescribed training or rehabilitation

regimen [78]. Furthermore, wireless networked

sensing enables new types of assistive devices such

as way finding [17] and walking navigation [8] for the

visually impaired.

• Large-scale in-field medical and behavioral studies:

Body-worn sensors together with sensor-equipped
Internet-connected smartphones have begun to

revolutionize medical and public health research

studies by enabling behavioral and physiological

data to be continually collected from a large num-

ber of distributed subjects as they lead their day to

day lives. With their ability to provide insight into

subject states that cannot be replicated in con-

trolled clinical and laboratory settings and that
cannot be measured from computer-assisted retro-

spective self-report methods, such sensing systems

are becoming critical to medical, psychological, and

behavioral research. Indeed, a major goal of the

exposure biology program under National Institute

of Health (NIH) Genes and Environment Initiative

(GEI) is to develop such field deployable sensing

tools to quantify exposures to environment (e.g.,
psychosocial stress, addiction, toxicants, diet, phys-

ical activity) objectively, automatically, and for days

at a time in the participants’ natural environments.

Researchers, both within the GEI program (e.g.,

[35], [45], and [58]) and elsewhere (e.g., [27], [55],

and [63]), have also recognized the utility of such

sensing in making measurements for longitudinal

studies ranging from the scale of individuals to
large populations.

As the four examples above show, the applications

enabled by wireless networked sensing technologies are

distributed across multiple dimensions. One dimension is

the spatial and temporal scope of distributed sensing. The

spatial scope can range from sensory observations of health

status made when an individual is confined to a building

(e.g., home, hospital) or a well-defined region (e.g., disaster
site) to observations made as an individual moves around

during the course of daily life. The temporal scope can range

from observations made for the duration of an illness or an

event to long-term observations made for managing a long-

term disease or for public health purposes. Different spatial

and temporal scopes place different constraints on the

availability of energy and communications infrastructure,

and different requirements on ergonomics.
A second dimension is that of the group size, which can

range from an individual patient at home, to groups of

patients at a hospital and victims at disaster sites, and all

the way to large dispersed population of subjects in a

medical study or an epidemic.

The last critical dimension is the type of wireless

networking and sensing technologies that are used: on-

body sensors with long-range radios, body-area networks
of short-range on-body sensors with a long-range gateway,

sensors implanted in-body with wireless communication

and power delivery, wireless sensors embedded in assistive

devices carried by individuals, wireless sensors embedded

in the environment, and sensors embedded in the ubiq-

uitous mobile smartphones. Clearly, there is a rich diver-

sity of wireless sensing technology with complementary

characteristics and catering to different applications.
Typically, more than one type of sensing technology gets

used for a single application.

IV. TECHNICAL CHALLENGES

In the paragraphs that follow, we describe some of the core

challenges in designing wireless sensor networks for
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healthcare applications. While not exhaustive, the chal-
lenges in this list span a wide range of topics, from core

computer systems themes such as scalability, reliability,

and efficiency, to large-scale data mining and data asso-

ciation problems, and even legal issues.

A. Trustworthiness
Healthcare applications impose strict requirements on

end-to-end system reliability and data delivery. For
example, pulse oximetry applications, which measure the

levels of oxygen in a person’s blood, must deliver at least

one measurement every 30 s [37]. Furthermore, end users

require measurements that are accurate enough to be used

in medical research. Using the same pulse oximetry

example, measurements must deviate at most 4% from

the actual oxygen concentrations in the blood [37]. Finally,

applications that combine measurements with actuation,
such as control of infusion pumps and patient controlled

analgesia (PCA) devices, impose constraints on the end-to-

end delivery latency. We term the combination of data

delivery and quality properties the trustworthiness of the

system and claim that medical sensing applications require

high levels of trustworthiness.

A number of factors complicate the systems’ ability to

provide the trustworthiness that applications require.
First, medical facilities, where some of these systems will

be deployed, can be very harsh environments for radio-

frequency (RF) communications. This harshness is the

result of structural factors such as the presence of metal

doors and dividers as well as deliberate effort to provide

radiation shielding, for example, in operating rooms that

use fluoroscopy for orthopedic procedures. In fact, Ko et al.
recently found that packet losses for radios following the
IEEE 802.15.4 standard is higher in hospitals than

other indoor environments [42]. Moreover, devices that

use 802.15.4 radios are susceptible to interference from

WiFi networks, Bluetooth devices, and cordless phones all

of which are heavily used in many hospitals.

The impact of obstacles and interference is exacerbated

by the fact that most wireless sensor network systems use

low-power radios to achieve long system lifetimes (i.e.,
maximizing the battery recharging cycle). The other impli-

cation of using low-power radios is that the network

throughput of these devices is limited. For example, the

theoretical maximum throughput of IEEE 802.15.4 radios

is 250 Kb/s and much lower in practice due to constraints

posed by medium access control (MAC) protocols and

multihop communications. Considering that applications

such as motion and activity monitoring capture hundreds
of samples per second, these throughput limits mean that a

network can support a small number of devices or that only

a subset of the measurements can be delivered in real time.

In some cases, the quality of the data collected from

wireless sensing systems can be compromised not by

sensor faults and malfunctions, but by user actions. This is

true even for smartphone-based sensing systems for which

many of the above mentioned RF challenges are less
severe. Considering that wireless sensing systems for

healthcare will be used by the elderly and medical staff

with little training, loss in quality due to operator misuse is

a big concern. Moreover, because wireless sensing enables

continuous collection of physiological data under condi-

tions not originally envisioned by the sensors’ developers,

the collected measurements may be polluted by a variety of

artifacts. For example, motion artifacts can have an impact
on the quality of heart rate and respiration measurements.

Therefore, estimating the quality of measurements col-

lected under uncertain conditions is a major challenge that

WSNs for healthcare must address. In turn, this challenge

means that WSNs need to employ techniques for auto-

mated data validation and cleansing and interfaces to

facilitate and verify their correct installation. Last but not

least, WSNs in healthcare should provide metadata that
inform data consumers of the quality of the data delivered.

B. Privacy and Security
Wireless sensor networks in healthcare are used to

determine the activities of daily living (ADL) and provide

data for longitudinal studies. It is then easy to see that such

WSNs also pose opportunities to violate privacy. Further-

more, the importance of securing such systems will
continue to rise as their adoption rate increases.

The first privacy challenge encountered is the vague

specification of privacy. The Heath Insurance Portability

and Accountability Act (HIPPA) by the U.S. Government is

one attempt to define this term [1]. One issue is that

HIPPA as well as other laws define privacy using human

language (e.g., English), thus, creating a semantic night-

mare. Nevertheless, privacy specification languages have
been developed to specify privacy policies for a system in a

formal way. Once the privacy specifications are specified,

healthcare systems must enforce this privacy and also be

able to express users’ requests for data access and the

system’s policies. These requests should be evaluated

against the predefined policies in order to decide if they

should be granted or denied. This framework gives rise to

many new research challenges, some unique to WSNs, as
we describe in the paragraphs that follow.

• Since context can affect privacy, policy languages

must be able to express different types of context

from the environment such as time, space, physi-

ological parameter sensing, environmental sensing,

and stream based noisy data. Moreover, most of the

context must be collected and evaluated in real

time. Since context is so central it must also be
obtained in a secure and accurate manner.

• There is a need to represent different types of data

owners and request subjects in the system as well

as external users and their rights when different

domains such as assisted living facilities, hospitals,

and pharmacies interact. One of the more difficult

privacy problems occurs when interacting systems
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have their own privacy policies. Consequently,
inconsistencies in such policies may arise across

different systems. For this reason, online consis-

tency checking and notification along with resolu-

tion schemes are required.

• There is a need to represent high-level aggregating

requests such as querying the average, maximum,

or minimum reading of specified sensing data. This

privacy capability must be supported by anonymiz-
ing aggregation functions. This need arises for

applications related to longitudinal studies and

social networking.

• There is a need to support not only adherence to

privacy for data queries (e.g., data pull requests),

but also the security for push configuration

requests to set system parameters (e.g., for private

use or configuring specific medical actuators).
• Because WSNs monitor and control a large variety

of physical parameters in different contexts, it is

necessary to tolerate a high degree of dynamics and

possibly even allow temporary privacy violations in

order to meet functional, safety, or performance

requirements. For example, an individual wearing

an EKG might experience heart arrhythmia and the

real-time reporting of this problem takes prece-
dence over some existing privacy requirements. In

other words, to send an emergency alert quickly it

may be necessary to skip multiple privacy protec-

tions. Whenever such violations occur, core

healthcare staff members must be notified of

such incidents.

In addition to policy and database query privacy

violations, WSNs are susceptible to new side channel
privacy attacks that gain information by observing the

radio transmissions of sensors to deduce private activities,

even when the transmissions are encrypted. This physical

layer attack needs only the time of transmission and the

fingerprint of each message, where a fingerprint is a set of

features of an RF waveform that are unique to a particular

transmitter. Thus, this is called the fingerprint and timing-

based snooping (FATS) attack [67].
To execute a FATS attack, an adversary eavesdrops on

the sensors’ radio to collect the timestamps and finger-

prints of all radio transmissions. The adversary then uses

the fingerprints to associate each message with a unique

transmitter, and uses multiple phases of inference to

deduce the location and type of each sensor. Once this is

known, various private user activities and health condi-

tions can be inferred.
For example, Srinivasan et al. introduce this unique

physical layer privacy attack and propose solutions with

respect to a smart home scenario [67]. Three layers of

inference are used in their work. First, sensors in the same

room are clustered based on the similarity of their

transmission patterns. Then, the overall transmission

pattern of each room is passed to a classifier, which

automatically identifies the type of room (e.g., bathroom
or kitchen). Once the type of room is identified, the

transmission pattern of each sensor is passed to another

classifier, which automatically identifies the type of sensor

(e.g., a motion sensor or a refrigerator door). From this

information, the adversary easily identifies several activ-

ities of the home’s residents such as cooking, showering,

and toileting, all with consistently high accuracy. From

such information, it is then possible to infer the residents’
health conditions.

Fortunately, many solutions with different tradeoffs

are possible for this type of physical layer attack. Such

solutions include 1) attenuating the signal outside of the

home to increase the packet loss ratio of the eavesdropper,

2) periodically transmitting radio messages whether or not

the device has data to be sent, 3) randomly delaying radio

messages to hide the time that the corresponding events
occurred, 4) hiding the fingerprint of the transmitter, and

5) transmitting fake data to emulate a real event.

Unfortunately, an adversary can combine information

available from many (external) sources with physical layer

information to make inferences even more accurate and

invasive. New solutions that are cost effective, address

physical layer data, protect against inferences based on

collections of related data, and still permit the original
functionality of the system to operate effectively are

needed.

A related fundamental problem, yet unsolved in WSNs,

is dealing with security attacks. Security attacks are

especially problematic to low-power WSN platforms

because of several reasons including the strict resource

constraints of the devices, minimal accessibility to the

sensors and actuators, and the unreliable nature of low-
power wireless communications. The security problem is

further exacerbated by the observation that transient and

permanent random failures are common in WSNs and

such failures are vulnerabilities that can be exploited by

attackers. For example, with these vulnerabilities, it is

possible for an attacker to falsify context, modify access

rights, create denial of service, and, in general, disrupt the

operation of the system. This could result in a patient being
denied treatment, or worse, receiving the wrong treatment.

Having in mind such unique challenges, new light-

weight security solutions that can operate in these open

and resource-limited systems are required. Solutions that

exploit the considerable amount of redundancy found in

many WSN systems are being pursued. This redundancy

creates great potential for designing WSN systems that

continuously provide their target services despite the
existence of failures or attacks. In other words, to meet

realistic system requirements that derive from long lived

and unattended operation, WSNs must be able to continue

to operate satisfactorily and effectively recover from

security attacks. WSNs must also be flexible enough to

adapt to attacks not anticipated during design or deploy-

ment time. Work such as the one proposed by Wood et al.
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provides an example of how such problems are addressed,
by proposing to design a self-healing system with the

presence and detection of attacks, rather than trying to

build a completely secure system [77].

C. Resource Scarcity
In order to enable small device sizes with reasonable

battery lifetimes, typical wireless sensor nodes make use of

low-power components with modest resources. Fig. 1

shows a typical wearable sensor node for medical appli-

cations, the SHIMMER platform [34]. The SHIMMER

comprises an embedded microcontroller (TI MSP430;
8-MHz clock speed; 10-KB RAM; 48-KB ROM) and a low-

power radio (Chipcon CC2420; IEEE 802.15.4; 2.4 GHz;

250-Kb/s PHY data rate). The total device power budget is

approximately 60 mW when active, with a sleep power

drain of a few microwatts. This design permits small,

rechargeable batteries to maintain device lifetimes of

hours or days, depending on the application’s duty cycles.

The extremely limited computation, communication,
and energy resources of wireless sensor nodes lead to a

number of challenges for system design. Software must be

designed carefully with these resource constraints in mind.

The scant memory necessitates the use of lean, event-

driven concurrency models, and precludes conventional

OS designs. Computational horsepower and radio band-

width are both limited, requiring that sensor nodes trade

off computation and communication overheads, for
example, by performing a modest amount of on-board

processing to reduce data transmission requirements.

Finally, application code must be extremely careful with

the node’s limited energy budget, limiting radio commu-

nication and data processing to extend the battery lifetime.

While smartphone-based systems typically enjoy more

processing power and wireless bandwidth, the fact that

they are less flexible compared to customizable mote
platforms limits their capability to aggressively conserve

energy. This leads to shorter recharge cycles and can limit

the types of applications that smartphones can support.

Another consideration for low-power sensing platforms

is the fluctuation in the resource load experienced by sensor

nodes. Depending on the patient’s condition, the sensor data

being collected, and the quality of the radio link, sensor

nodes may experience a wide variation in communication
and processing load over time. As an example, if sensor

nodes perform multihop routing, a given node may be

required to forward packets for one or more other nodes

along with transmitting its own data. The network topology

can change over time, due to node mobility and environ-

mental fluctuations in the RF medium, inducing unpre-

dictable patterns of energy consumption for which the

application must be prepared.

V. SYSTEMS

Next, we present several wireless sensing system proto-

types developed and deployed to evaluate the efficacy of

WSNs in some of the healthcare applications described in

Section III. While wireless healthcare systems using

various wireless technologies exist, this work focuses on
systems based on low-power wireless platforms for physi-

ological and motion monitoring studies, and smartphone-

based large-scale studies.

A. Physiological Monitoring
In physiological monitoring applications, low-power

sensors measure and report a person’s vital signs (e.g.,

pulse oximetry, respiration rate, temperature). These appli-
cations can be developed and deployed in different contexts

ranging from disaster response, to in-hospital patient mon-

itoring, and long-term remote monitoring for the elderly.

While triage protocols for disaster response already exist

(e.g., [31] and [70]), multiple studies have found that they

can be ineffectual in terms of accuracy and the time to

transport as the number of victims increases in multicasualty

incidents [5], [65]. Furthermore, studies in hospitals report
that patients are left undermonitored [15] and emergency

departments today operate at or over capacity [4]. Finally,

anecdotal evidence suggest that this lack of patient

monitoring can lead to fatalities [14], [54], [68].

Therefore, systems that automate patient monitoring

have the potential to increase the quality of care both in

disaster scenes and clinical environments. Systems such as

CodeBlue [50], MEDiSN [43], and the Washington Uni-
versity’s vital sign monitoring system [13] target these appli-

cation scenarios. Specifically, CodeBlue [50] aims to

improve the triage process during disaster events with the

help of WSNs comprising motes with IEEE 802.15.4 radios.

The CodeBlue project integrated various medical sensors

[e.g., EKG, SpO2, pulse rate, electromyography (EMG)] with

mote-class devices and proposed a publish/subscribe-based

Fig. 1. The SHIMMER wearable sensor platform. SHIMMER

incorporates a TI MSP430 processor, a CC2420 IEEE 802.15.4 radio,

a triaxial accelerometer, and a rechargeable Li-polymer battery.

The platform also includes a MicroSD slot supporting up to 2 GB of

Flash memory.
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network architecture that also supports priorities and

remote sensor control [11]. Finally, victims with CodeBlue

monitors can be tracked and localized using RF-based

localization techniques [48].

Ko et al. proposed MEDiSN to address similar goals as

CodeBlue (e.g., improve the monitoring process of hospital

patients and disaster victims as well as first responders),

but using a different network architecture [43]. Specifi-
cally, unlike the ad hoc network used in CodeBlue,

MEDiSN employs a wireless backbone network of easily

deployable relay points (RPs). RPs are positioned at fixed

locations and they self-organize into a forest rooted at one

or more gateways (i.e., PC-class devices that connect to the

Internet) using a variant of the collection tree protocol

(CTP) [26] tailored to high data rates. Motes that collect

vital signs, known as miTags (see Fig. 2), associate with RPs
to send their measurements to the gateway. The dedicated

backbone architecture that MEDiSN incorporates signif-

icantly reduces the routing overhead compared to a mobile

ad hoc network architecture and results in two major

benefits. First, it allows the network’s operator to expand

its coverage and engineer its performance by altering the

number and position of RPs in the backbone. Second, since

miTags do not have to route other nodes’ data, they
aggressively duty cycle their radio to conserve energy. The

Washington University’s patient monitoring has adopted a

similar wireless backbone network to take advantage of

similar benefits [12], [13].

The systems described above were deployed in disaster

simulations [24] and hospital pilot studies [13], [41], [42].

These studies showed that wireless sensing systems can in

fact overcome the challenging RF conditions that exist in
these environments to meet the applications’ stringent

trustworthiness requirements [42].

Chipara et al. found that another source of unreliability
in clinical environments is the outage of the sensing

capability itself [13]. The authors show that the distribu-

tion of sensing outages is heavy-tailed containing pro-

longed outages caused by sensor disconnections. Their

experience reveals that the use of automatic sensor discon-

nection alarms and oversampling can enhance system

reliability. Finally, the pilot studies above also report that

the satisfaction levels of healthcare personnel and users
such as patients or disaster victims is high and conclude

that the systems are practically feasible.

While the systems introduced above deal with improv-

ing the quality of patient care in hospitals or disaster

scenarios, researchers and practitioners noticed that the

coming worldwide silver tsunami [69], where a large

number of retiring elders overload the capacity of current

hospitals, is stressing the traditional concept of healthcare,
which is focused on clinical and emergency medical

service (EMS) settings. Specifically, it is economically and

socially advantageous to reduce the burden of disease

treatment by enhancing prevention and early detection

while allowing people to stay at home for as long as

possible. This requires a long-term shift from a centralized,

expert-driven, crisis-care model to one that permeates

personal living spaces and involves informal caregivers,
such as family, friends, and members of the community.

A typical home healthcare system based on WSN is

AlarmNet [75], [76], an assisted-living and residential

monitoring network for pervasive, adaptive healthcare.

AlarmNet is a system based on an extensible, heteroge-

neous network architecture targeting ad hoc, wide-scale

deployments. It includes custom and commodity sensors,

an embedded gateway, and a back-end database with
various analysis programs. The system includes protocols

such as context-aware protocols informed by circadian

activity rhythm analysis for smart power management. It

supports real-time online sensor data streaming and an

inference system to recognize anomalous behaviors as

potential indicators of medical problems. Privacy control is

based on access control lists and all queries are logged.

Future work is planned to use data mining on the query
logs to detect privacy attacks. All messages are encrypted

to ensure data confidentiality.

Intel Research Seattle and the University of Washington

have built a prototype system that can infer a person’s

ADLs [59]. In their system, sensor tags (both passive and

active) are placed on everyday objects such as a toothbrush

or a coffee cup. The system tracks the movement of tagged

objects with tag readers. Their long-term goal is to develop
a computerized and unobtrusive system that helps manage

ADLs for the senior population [38].

University of Rochester is building the Smart Medical

Home [46], which is a five-room Bhouse[ outfitted with

infrared sensors, computers, biosensors, and video cameras

for use by research teams to work on research subjects as they

test concepts and prototype products. Researchers observe

Fig. 2. Medical information tag, or miTag for short, used in

MEDiSN [43]. The miTag is a Tmote mini-based [53] patient monitor

that includes a pulse oximetry sensor with LEDs, buttons and an

LCD screen. The miTag is powered using a rechargeable 1200-mAh

3.7-V Li–Ion battery and external finger tip sensors are used to make

the pulse oximetry measurements.

Ko et al.: Wireless Sensor Networks for Healthcare

1954 Proceedings of the IEEE | Vol. 98, No. 11, November 2010



and interact with subjects from two discreet observation
rooms integrated into the home. Their goal is to develop an

integrated personal health system that collects data for

24 h a day and presents it to the healthcare professionals.

Georgia Institute of Technology built an Aware Home

[40] as a prototype for an intelligent space. This space

provides a living laboratory that is capable of gathering

information about itself and the different types of activities

of its inhabitants. The Aware Home combines context-
aware and ubiquitous sensing, computer-vision-based

monitoring, and acoustic tracking all together for ubiqui-

tous computing of everyday activities while remaining

transparent to its users.

The Massachusetts Institute of Technology is working

on the PlaceLab initiative [36], which is a part of the

House_n project. The mission of House_n is to conduct

research by designing and building real living environ-
mentsVBliving labs[Vthat are used to study technology

and design strategies in context. The PlaceLab is a one-

bedroom condominium with hundreds of sensors installed

in nearly every part of the home.

The systems introduced above provide useful physiolog-

ical information to medical personnel using resource

constrained devices. Nevertheless, these systems deal with

only the simplest aspects of medical data security. For
example, MEDiSN performs 128-b advanced-encryption-

standard-based encryption and authentication to secure all

physiological data [32] but does not provide any of the policy

controls described above. Another limitation of existing

systems is the small number of sensors that each mobile

device can support due to hardware constraints. Developing

new platforms that integrate stronger security and privacy

mechanisms with more diverse sensing and processing
capabilities is likely to increase the range of physiological

monitoring applications that WSNs can support.

B. Motion and Activity Monitoring
Another application domain for WSNs in healthcare is

high-resolution monitoring of movement and activity

levels. Wearable sensors can measure limb movements,

posture, and muscular activity, and can be applied to a
range of clinical settings including gait analysis [60], [64],

[73], activity classification [29], [52], athletic performance

[3], [51], and neuromotor disease rehabilitation [49], [57].

In a typical scenario, a patient wears up to eight sensors

(one on each limb segment) equipped with MEMS accel-

erometers and gyroscopes. A base station, such as a

PC-class device in the patient’s home, collects data from

the network. Data analysis can be performed to recover the
patient’s motor coordination and activity level, which is in

turn used to measure the effect of treatments.

In such studies, the size and weight of the wearable

sensors must be minimized to avoid encumbering the

patient’s movement. The SHIMMER sensor platform

shown in Fig. 1 measures 44.5� 20� 13 mm and weighs

just 10 g, making it well suited for long-term wearable use.

In contrast to physiological monitoring, motion anal-
ysis involves multiple sensors on a single patient each

measuring high-resolution signals, typically six channels

per sensor, sampled at 100 Hz each. This volume of sensor

data precludes real-time transmission, especially over

multihop paths, due to both bandwidth and energy con-

straints. The SHIMMER platform incorporates a MicroSD

interface, permitting up to 2 GB of storageVenough to

store up to a month of continuously sampled sensor data.
While the energy consumption of flash input/output is

nonnegligible, it is about one-tenth the energy cost to

transmit the same amount of data over the radio. As a

result, it is necessary to carefully balance data sampling,

storage, processing, and communication to achieve

acceptable battery lifetimes and data fidelity.

Two systems, SATIRE [23] and Mercury [49], typify

the approach to addressing these challenges. SATIRE is
designed to identify a user’s activity based on acceler-

ometers and global positioning system (GPS) sensors

integrated into Bsmart attire[ such as a winter jacket.

SATIRE nodes, which are based on the MICAz [16]

platform, measure accelerometer data and log it to local

flash. These data are opportunistically transmitted using

the low-power radio when the SHIMMER node is within

communication range with the base station. Once the data
are collected at the base station, the collected data are

processed offline to characterize the user’s activity pat-

terns, such as walking, sitting, or typing. Sensor nodes

perform aggressive duty cycling to reduce power con-

sumption, extending lifetimes from several days to several

weeks.

The goal of the Mercury system is to permit long-term

studies of a patient’s motor activity for neuromotor disease
studies, including Parkinson’s disease, stroke, and epilep-

sy. Energy is far more constrained in Mercury than in

SATIRE, due to the use of lightweight sensor nodes with

small batteries. Mercury builds upon SATIRE’s approach

to energy management and integrates several energy-

aware adaptations, including dynamic sensor duty cycling,

priority-driven data transmissions, and on-board feature

extraction. Mercury is being used in several studies of
Parkinson’s and epilepsy patients [49].

While SATIRE and Mercury show the feasibility of

using low-power wireless platforms to perform longitudi-

nal studies of human activity, issues related to improving

node lifetime and providing stronger security and privacy

guarantees remain areas of active research.

C. Large-Scale Physiological and Behavioral Studies
The final application of WSNs in healthcare that we

discuss is their use in conducting large-scale physiological

and behavioral studies. The confluence of body-area net-

works of miniature wireless sensors (such as the previously

mentioned miTag and SHIMMER platforms), always-

connected sensor-equipped smartphones, and cloud-based

data storage and processing services is leading to a new
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paradigm in population-scale medical research studies,
particularly on ailments whose causes and manifestations

relate to human behavior and living environments.

Traditionally such studies are either conducted in

controlled clinical laboratory settings with artificial stimuli,

or rely on computer-assisted retrospective self-report

methods. Both of these approaches have drawbacks: the

complex subtleties of real-life affecting human behavior can

rarely be recreated accurately in a laboratory, and self-report
methods suffer from bias, errors, and lack of compliance.

However, the combination of body-area wireless sensor

networks, smartphones, and cloud services permits physical,

physiological, behavioral, social, and environmental data to

be collected from human subjects in their natural environ-

ments continually, in real time, unattended, and in an

unobtrusive fashion over long periods. Typically, data are

collected from wireless sensors worn by subjects, wireless
medical instruments, and sensors embedded in devices such

as smartphones. After local validation, artifact removal, and

local processing, sensor data are wirelessly transmitted using

cellular or WiFi networks to cloud-based services for

subsequent analysis, visualization, and sharing by research-

ers. Such systems provide insight into subject states that

traditional study methods simply cannot achieve. Conse-

quently, research efforts such as the exposure biology
program under NIH’s GEI are developing field-deployable

wireless sensing tools to quantify exposures to environments

(e.g., psychosocial stress, addiction, toxicants, diet, physical

activity) objectively, automatically, and for multiple days in

participants’ natural environments.

One example of such systems is AutoSense [45], in

which objective measurements of personal exposure to

psychosocial stress and alcohol are collected in the study
participants natural environments. A field-deployable suite

of wireless sensors form a body-area wireless network and

measure heart rate, heart rate variability, respiration rate,

skin conductance, skin temperature, arterial blood pres-

sure, and blood alcohol concentration. From these sensor

readings, which after initial validation and cleansing at the

sensor are sent to a smartphone, features of interest indi-

cating onset of psychosocial stress and occurrence of
alcoholism are computed in real time. The collected infor-

mation is then disseminated to researchers answering

behavioral research questions about stress, addiction, and

the relationship between the two. Moreover, by also cap-

turing time-synchronized information about a subject’s

physical activity, social context, and location, factors that

lead to stress can also be inferred, and this information can

potentially be used to provide personalized guidance about
stress reduction.

A second example is a portable system called the

physical activity and location measurement system

(PALMS) developed at the University of California San

Diego [58]. PALMS aims at monitoring study subjects in

everyday life for long enough periods of time to detect

patterns in physical activity and energy expenditure. These

information (collected from combined heart rate and
motion sensors) and location (from GPS units) are col-

lected in the natural environment of the study participants.

The system helps answer questions about the energy used

by a person during different activities in the course of the

day and the variance across a population of subjects. The

synchronized geolocation information permits under-

standing how physical activity and energy expenditure

varies by location and is influenced by environmental
factors such as the built environment, crime, the avail-

ability of parks, and recreation facilities, or terrain.

These systems for population-scale medical studies are

still in their early stages, and several technical and

algorithmic challenges remain to be addressed. Energy is

certainly one challenge. While some on-body sensors have

high sampling rates leading to significant energy con-

sumption (i.e., low battery life), the desire to facilitate easy
compliance with the study protocols preclude a frequent

charging schedule.

However, a bigger challenge with this technology is the

issue of information privacy, and its tension with the quality

and value of information [19]. Contemporary privacy

practices center on the notion of Bpersonally identifiable

information[ and Binformed consent.[ However, with these

systems, the traditional intuitive notion of privacy is not
enough. Privacy is not just about removing explicit

identifiers, encrypting data, using trusted software, and

securing servers. These are easily done, though imperfectly.

Sensory information traces captured by these systems are

highly personal. Embedded in them is information that

correlates with our identity and our behaviors. When

combined with publicly available innocuous factsVthe so-

called Bdigital footprints[ and Binformation breadcrumbs[
that we all leave behind as we lead our livesVthese sensor

information traces can be deanonymized, and subjects’

identities and life patterns can be inferred statistically.

For example, Chaudhuri and Mishra showed that

personal information may be identified even from

anonymized and sanitized population level data sets [10].

Similarly, Krumm has shown that location traces can be

deanonymized via statistical analysis to infer subjects’
home location with high probability [44], which then can

be used to reveal their identity using information that is

freely available on the web such as reverse white-page

lookup.

Likewise, traditional prior informed consent is not

adequate when sensors may capture data in unanticipated

situations and the sheer amount and nature of sensor data

makes information leakage risks hard to comprehend.
Collecting data continuously as subjects go through their

daily lives at their homes, offices, and other places means

that it is impossible to anticipate upfront, and accordingly

inform subjects about, the complete nature of information

that the sensor data may reveal. Some of the seemingly

innocuous sensor data thus collected in relatively uncon-

trolled settings may capture information about confidential
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aspects of subjects’ life patterns, personal habits, and
medical condition.

One answer to these problems can be to allow the study

subjects and patients to retain control over their raw sensor

data throughout its life cycle: its capture, sharing, retention,

and reuse [7], [66]. However, giving study subjects control

over data raises concern about quality of data for researchers.

As it is, ensuring high-quality trustworthy information from

sensors out in the real world is hard due to malfunctions,
misbehaviors, and lack of compliance. Letting subjects

selectively hide or perturb data raises the issue of bias and

availability, and thus utility. Quoting P. Ohm from a recent

article: BData can either be useful or perfectly anonymous,

but never both[ [56]. Technology assists such as automated

validation procedures, audit traces, and incentive mechan-

isms to ensure compliance and encourage sharing may

provide further help.

VI. FUTURE DIRECTIONS

Driven by user demand and fueled by recent advances in

hardware and software, the first generation of wireless
sensor networks for healthcare has shown their potential to

alter the practice of medicine. Looking into the future, the

tussle between trustworthiness and privacy and the ability

to deploy large-scale systems that meet the applications’

requirements even when deployed and operated in

unsupervised environments is going to determine the

extent that wireless sensor networks will be successfully

integrated in healthcare practice and research. h
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