
EE432: Digital Signal Processing Fall 2012

Project 4: Voice Pre-Processing

Assigned: Thurs 9/13/2012 Due: Thurs 9/20/2012

Introduction

 In this lab, you will write functions to pre-process real data signals such as voice clips. You will use the
voice .wav files you collected in the last project. To begin, we will assume that each .wav file contains a
single spoken word.

I. MATLAB Functions

 1. In a voice recording, there are typically gaps between words and/or sounds. When processing
voice for word or speaker recognition, it is often desirable to first remove the “dead” time. An
example is shown in the figure below:

In general, depending on the microphone and other factors, recordings may be made at different
signal levels (voltages). When one normalizes the signal, there’s a better chance of correctly
determining its starting point. Below you see the same signal from the previous plot after it has
been normalized to fall in the range [-1,+1].

For this project, it will be convenient to normalize the signal to the interval [-1 1] in a different
manner than done previously. Write a function PeakNormalize432 that will normalize a signal to
this interval by dividing each sample by the maximum signal magnitude (absolute value). For a
stereo signal, you should divide both channels by the global maximum absolute value (i.e., divide
both channels by the same value, rather than a different value for each channel). Note that the
entire range from -1V to 1V may not be used under this normalization method, depending on the
input signal.

The function should be called PeakNormalize432 (so the m-file should be called
PeakNormalize432.m). The usage will be:

>> y = PeakNormalize432(x);

In the line above, x is the input signal you wish to normalize. If the input is all zeros, there
should be a warning message displayed and the function should return y = [].

Important considerations:

Sometimes data collected has a dc bias, and/or a linear trend that can cause errors in pre-
processing algorithms. Shown below are some examples of some data that contains these trends:

In general, the first step in processing an audio signal is to remove the mean value (dc value) and
any linear trend. This is called “detrending,” and the MATLAB detrend function accomplishes it.
Edit your PeakNormalize432 function by adding a call to MATLAB’s detrend before you do the

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time(sec)

A
m

pl
itu

de

Data with Trends

Data with a negative dc bias

Data with a positive dc bias and a positive linear trend

scaling.

With your signal normalized as described above, you’ll be able to use a threshold directly on the
signal magnitude to determine where the voice data starts. Write a MATLAB function called
FindSignalStart that will determine when the speech signal actually begins in an input speech
vector (there may be some dead time before a voice is heard; see the figure on the previous
page):

>> [y,index]=FindSignalStart(x)

where x is the input vector of samples. The output y is the speech sample that is the same input
but with the first non-speaking samples (background noise) removed; that is, the spoken word
begins right at the beginning of y. The output index is the index number in the input vector
where you determined the word actually begins. The find function may prove useful here.

When applying your threshold, be sure to account for the fact that it may be crossed in either the
positive or negative direction. Thresholding either the absolute value of the signal or the squared
signal is common.

How do you tell if a word is present in a speech signal? What threshold would you apply? Hint:
Plot some of the word files to get an idea.

 2. Write a MATLAB function called FindSignalEnd that will determine when the signal ends in an
input speech vector (there may be some dead time after the word is spoken):

>> [y,index]=FindSignalEnd(x)

where x is the input vector of speech samples. The output y is the speech sample that is input but
with the last non-speaking samples (background noise) removed; that is, the spoken word ends
right at the end of y. The output index is the index number in the input vector where you
determine the word actually ends. You should use the same ideas you had for the FindSignalStart
function. The flipud or fliplr function may prove useful here.

Important considerations:

How you tell when a word ends is similar to finding when a word begins.

 3. Write a MATLAB function called AddNoise that will add Additive White Gaussian Noise
(AWGN) to an input signal:

>> y=AddNoise(x,sigma)

where x is the input signal. Noise should be added using the randn function. The output y is the
input signal + noise. The second input sigma is the standard deviation of the noise you add. Use
zero-mean noise, so that the noise power is equal to sigma2.

 4. Write a MATLAB function called ComputeBkgdNoise that will compute the statistics of the
background noise in a noisy input signal. These will be used in S/N calculations. It is used as in:

>> [noiseMean,noiseStd]=ComputeBkgdNoise(x)

where x is the input vector. The outputs noiseMean and noiseStd are the estimated mean
and standard deviation values, respectively, of the noise. Compute these background noise
statistics using a portion or portions of the input vector where there is no word being spoken. One
way to do this is to strip off the background noise before and after the word is spoken, and then
compute the mean and standard deviation of these noise segments taken together. Note that your
FindSignalStart and FindSignalEnd functions can help you do this.

II. Test Your Functions

 1. Choose one of each of your spoken digit .wav files (0-9), use wavread to read in the data,
and remove the beginning and ending silence. Play each digit with the beginning and ending
silence removed to see how well your functions above work. Also, plot the signal and visually
compare the indices that your FindSignalStart and FindSignalEnd functions found with the
corresponding values determined by eye. If they don’t match well, you need to adjust how you
are determining the beginning and end of the signal.

 2. Create one long speech signal by joining all of the digits (w/silence removed) together. Then
repeat the previous step. Play this long vector; it should sound like someone saying “zero-
one-two-three-four-five-six-seven-eight-nine” without pauses in between each word.

Write out this file using wavwrite and upload it to Google Docs/Drive. (You can safely
ignore any Matlab warnings about signal clipping.) Be sure that after you use wavwrite,
you use Windows to listen to the file so it is what you expect.

 3. For the following files, USE YOUR FindSignalStart AND FindSignalEnd FUNCTIONS to
find the time (in seconds) at which each speech signal begins and ends. Record the values in
the table below.

File Begin Time (sec) End Time (sec)

raven7c.wav

Drizzle.wav

Did your functions work well on these signals? (If not, why not?)

 4. Add zero-mean Gaussian noise to one of your “Should we chase?” speech clips. Recall that the
randn function can be used to create Gaussian noise. Put in enough noise so that the words can
be barely distinguished when you listen to it. Record the following:

Max value of the “Should we chase?” signal: __________________

Min value of the “Should we chase?” signal: _________________

Your value of noise standard deviation for just-distinguishable words: _____________

Write out this noisy file using wavwrite and upload it to Google Docs/Drive. Be sure that
after you use wavwrite, you use Windows to listen to the file so it is what you expect.

 5. For the following files, record the background noise mean and standard deviation found using
your ComputeBkgdNoise function:

File Noise Mean Noise Standard Deviation

raven7c.wav

Drizzle.wav

For this lab, turn in a hard copy of your well-commented code along with answers to
questions 3 - 5 above, and upload the two .wav files specified to Google Docs/Drive .

