
EE432: Digital Signal Processing Fall 2012

Project 05: Difference Equations, Impulse Responses and Filtering

Assigned: Thurs 09/20/12 Due: Thurs 10/04/12

This project is intended to give you some practice working with difference equations and impulse responses, and an
introduction to how they are handled in MATLAB.

I. Preliminaries

1. Sketches of some of the basic discrete-time functions are attached to this document, along with MATLAB code
that implements four of them (functions called impD, rampD, uD, impND). Our book does not use a ramp function
(rampD), or the periodic impulse function (called impND), but they are provided as well and we will use them.
Create MATLAB function files that implement these discrete-time functions. Just copy the code; all the
comments are not necessary unless you want them - I will not collect them.

2. Test your new functions by creating stem plots for the signals a-d below. Put them on a 4 x 1 subplot, with

proper labels, and turn on the grid. When using the stem function, be sure to use the “filled” option so that
the heads of the stems contain filled circles. Also, use the axis function to set the axis limits so that the stem
heads all fall within the display. Pass the function the values you want the plot axes limits to be. You would
use it like this:

>> stem(n,x,’filled’); axis([xmin xmax ymin ymax]); grid on;
% xmin, xmax are the min/max x-values to display
% ymin, ymax are the min/max y-values to display

For example, for the first plot below, if you don’t use the axis command, the left end of the plot will be at n = -5
and the right end will be at n = 10. The stems that occur there will be hard to see. Also, the plot will limit the
vertical axis to fall from 0 to 1.0, so the stem heads with height 1 will be hard to see. Instead, you might use:

>> axis([-5.5 10.5 -0.5 1.5])

Now create the plots for these signals and make sure they are correctly plotted:

a) x[n] = u[n] − u[n−3], −5 ≤ n ≤ 10.

b) x[n] = δ[n] + 0.5 δ[n−2] − 0.5 δ[n+2], −5 ≤ n ≤ 5.

c) x[n] = ramp[−n] ⋅ u[n+5], −10 ≤ n ≤ 5.

d) x[n] = δ2[n] ramp[2n], 0 ≤ n ≤ 15.

II. Impulse Response, Difference Equations and Convolution

1. By hand (turn in a table), find the impulse response of the system defined by y[n] = x[n] – 0.8 y[n−1]. By
hand, plot this impulse response from n= −1 up to n=8.

2. The general form of the difference equation is given by:

0 1 2

0 1 2

[] [1] [2] []
 [] [1] [2] []

N

M

a y n a y n a y n a y n N
b x n b x n b x n b x n M
+ − + − + + −

= + − + − + + −




We use the coefficients as vector variables in many of the MATLAB DSP functions. For example, the output y-
coefficients are the ak’s, which we put in vector form as a = [a0 a1 a2 … aN], and the input x-coefficients are the
bk’s, which we put in vector form as b = [b0 b1 b2 … bM]. This is how the coefficients are passed into MATLAB.

It is important that each delay of an input or output is accounted for in the vector. For example, if any of the bk
values are zero, the zeros should appear between the 1st delay and the last delay. For example, if the right side of
the general difference equation was: “= x[n] – x[n-3]”, the delay of 1 and the delay of 2 coefficients must appear,
so that b = [1 0 0 -1];

MATLAB has a function called impz which will calculate a system’s impulse response, given the A and B
coefficient vectors. To find the impulse response of a system, use the function as in the following:

>> [h,n] = impz(b,a);

Here, b is the vector of input coefficients, a is the vector of output coefficients, h is the resulting impulse response,
and n is a vector of the sample numbers corresponding to the impulse response values.

a) Create a MATLAB stem plot of the impulse response of the difference equation in part II, step 1
using the impz function. Do the MATLAB values of h[n] match your values?

b) Determine by hand (turn in a table) the impulse response for the system with difference equation
given by:

y[n] = 0.2(x[n] + x[n−1] + x[n−2] + x[n−3] + x[n−4])

What kind of filter is this (FIR/IIR, recursive/non-recursive)? Create a MATLAB plot of the of this
impulse response using the coefficients of the difference equation as inputs to impz. Do the
MATLAB values of h[n] match your values?

c) Determine by hand (turn in a table) the impulse response for the system with difference equation

given by:

y[n] = y[n−1] + 0.2 x[n] − 0.2 x[n−5]

What kind of filter is this? Create a MATLAB plot of the of this impulse response using the
coefficients of the difference equation as inputs to impz. What kind of filter is this? Do the
MATLAB values of h[n] match your values?

3. If the system impulse response is known, then convolution can be used to compute the output for any input.

a) By hand (turn in your convolution table), determine the output of the system with impulse
response:

h[n] = δ[n] + 0.5 δ[n−1] + 0.25 δ[n−2] + 0.125 δ[n−3] – 1.875 δ[n−4]

if the input to the system is x[n] = u[n].

MATLAB does have a convolution function called conv. If you input two vectors, it will convolve them to yield
the result. You use it as in:

>> y = conv(x,h);

(Note: unlike the impz function, conv does not return the n-vector for the x-axis, so it is a little trickier to determine
how to plot its result.)

b) Create a unit step function for −10 < n < 5, then convolve it with the impulse response above. Use a
stem plot to plot the result, but do not supply the vector for x-axis values (which would be n) and

turn the tick labels on the x-axis off (using set(gca,’XTickLabel’,[])) just to avoid
confusion. Compare the values of this stem plot with your result obtained by hand. Do they match?
Why do the values go haywire on the right edge?

III. Difference Equations and Filtering

1. System outputs can be found by convolution or via the difference equation, as seen in previous steps. In
MATLAB, the easier way to calculate the output is using the difference equation coefficients and the filter
command. The filter command is used as in

>> y = filter(b,a,x)

Where a and b are the difference equation coefficient vectors as before, and x is the input that you wish to filter.

2. Create a 25 point moving average filter in MATLAB. Moving average filters tend to smooth out data, so it
removes high frequency information (that is, it is a low pass filter).

a) Take one of your voice files and use FindSignalStart to create a new signal that contains voice at its
beginning (i.e. no leading silence). We will use this signal in the following steps.

b) Use your moving average filter on this voice signal. Note the amplitudes of the original and filtered
signals.

c) Play the original, and then the filtered signal. Can you hear the smoothing effect? If so, what does
it sound like?

d) Take the available music file (not voice files) and use FindSignalStart to create a new signal that
contains music at its beginning. Now try filtering this new music signal with a 100-point moving
average filter. Can you hear the difference between the original and the filtered signal? After
filtering, plot (using the plot command) the first 1000 samples of the music signal you just created,
along with the first 1000 samples of the filtered signal, on an axis with accurate time values (in sec).
Label the plot and turn it in.

For this lab, answer the questions that are in boldface font. Turn in all plots that were called for
along with your code to create them. You do not need to submit the functions you copied in the
first step.

+++

+++

+++

