
EE432 Fall 12 Project 09: Filter Design Using fdatool (Due: 11/15/10)

In this lab, you will learn about designing digital filters using MATLAB, and applying the filters you
design to music or other signals.

I. Filter Design using fdatool:

1. In MATLAB, start up the Filter Design and Analysis tool by typing fdatool at the command
line.

2. Create two separate FIR filters using the following specifications:

LPF: FIR; Equiripple in the passband and stop band; filter order = 200.
Frequency specifications: sampling frequency 44.1 kHz, Fpass = 100 Hz, Fstop = 500 Hz.
Magnitude specifications: Wpass = 0.05, Wstop = 1.

Export these filter coefficients using File→Export with the variable name lpf.

HPF: FIR; Equiripple in the passband and stop band; filter order = 200.
Frequency specifications: sampling frequency 44.1 kHz, Fstop = 100 Hz, Fpass = 500 Hz.
Magnitude specifications: Wpass = 0.05, Wstop = 1.

Export these filter coefficients using File→Export, with the variable name hpf.

Use fvtool to plot the magnitude responses of both lpf and hpf on the same plot, and turn in this
plot as part of your write-up.

3. Load the music clip “Mozart-EineKleineNachtmusik-short.wav” into MATLAB using

wavread. Remember to also import the sampling frequency. Use audioplayer to listen to the
music.

4. Filter your music using your low pass filter coefficients as one input to the filter function, then
listen to the filtered result. Does the sound you hear make sense (does it sound as if the higher
frequencies are attenuated)?

5. Filter your music using your high pass filter coefficients as one input to the filter function, then

listen to the filtered result. Does the sound you hear make sense (are low frequencies
attenuated)?

6. Note that the high pass and low pass filters combined make something very close to an all-pass

filter. If that is the case, then when you add the high-pass filtered music to the low-pass filtered
music, and play the sum of the two, it should sound like the original music clip. Does it? YES.

7. The impulse response of an all-pass filter is just an impulse (a delta function). Determine if the

sum of the impulse responses of the HPF and the LPF together gives the impulse response of an
all-pass filter. Use the stem function to plot this sum. Turn in this plot and describe your result.

8. Now filter the music with your new filter that is the sum of the LPF and HPF impulse
responses. If this is an all-pass filter, the music should sound like the original. Does it?

II. FIR Graphic Equalizer:

You have probably seen a graphic equalizer somewhere. Your car, for example, has something like a
graphic equalizer; you can adjust the bass (low frequencies) and the treble (higher frequencies). In a
true graphic equalizer, you can adjust the amplitude of a number of frequency ranges as the music is
played, typically using a slide control as in the figure below.

 iTunes Graphic Equalizer

Use your LPF and HPF from part I as a rudimentary equalizer for the following tasks:

1. Emphasize the bass: take the LPF filter coefficients and multiply them by 1.0, and deemphasize

the treble by multiplying the HPF coefficients by 0.20. Add these scaled impulse responses
together, filter the music, then listen to the result. Is the bass emphasized, with weak treble?

2. Emphasize the treble: take the LPF filter coefficients and multiply them by 0.20, and
deemphasize the treble by multiplying the HPF coefficients by 1.0. Add these scaled impulse
responses together, filter the music, then listen to the result. Is the treble emphasized, with
weak bass?

IV. Noise removal using IIR filter

White noise is named as such because it is comparable to white light. White light is comprised of all
colors; white noise is comprised of all frequencies, in equal power. For this reason, if we were to plot
the magnitude of the spectrum of a white noise signal it would appear approximately flat. When the
term “white noise” is used, we usually think of white Gaussian noise; that is, noise with uncorrelated
sample values, each of which would follow a Gaussian distribution if taken over a collection of noise
“snippets.” Below is a plot of the magnitude spectrum of a Gaussian white noise signal with fs = 44.1
kHz. The magnitude spectrum is essentially flat.

If we bandpass filter white noise, we achieve a noise signal whose magnitude spectrum is flat, but only
over a portion of the entire spectrum. Below is an example of such a signal, with frequency content
from ~2800 Hz to ~3800 Hz (sampling frequency was 44.1 kHz).

Do the following:

1. Download the “Mozart-EineKleineNachtmusik-bandnoise.wav” file and bring it into

MATLAB. Listen to it so you hear the corrupting noise. (This file was generated simply by
adding the noise signal whose spectrum is depicted immediately above to the original,
uncorrupted file.)

2. Using fdatool, design an IIR band stop filter to remove (i.e. severely attenuate) the band

containing the ~2800-3800 Hz noise. Export the parameters of your filter (in second-order-
section form) using the default names ‘SOS’ and ‘G’ for the filter coefficients and gains,
respectively. Then use the function filtfilt(SOS,G,x), where x is the signal to be filtered, to
filter the noisy signal. (Note 1: Using multiple second-order filters in cascade – which is what
you’re doing with the SOS and G form – rather than a theoretically equivalent single-section

filter of higher order mitigates the potentially destabilizing effects of coefficient quantization.
The cascaded form can be achieved by separating the factored form of the transfer function into
smaller (second order) products. Note 2: Using filtfilt rather than filter ensures that there is no
phase distortion due to the nonlinear phase response of the IIR filter.) Listen to your result. It
should sound much better.

3. Create a screen capture of the fdatool GUI after you have designed the filter and turn it in with

your write up.

4. Write the filtered signal to a .wav file called “FilteredMozart_<yourlastname>.wav”, and
upload it to Google Drive/Docs. Be sure you use the correct sampling frequency when writing
out your file.

For this project write-up, turn in the 3 requested plots and upload the .wav file to
Google Drive/Docs.

