
EE432 Fall 08 Project 08: Filter Design and Implementation (Due: 11/12/08)

In this lab, you will learn about designing frequency filters using MATLAB, and then how to filter
music or other audio signals with the filters you design.

Filter Design:

1. In MATLAB, start up the Frequency Design and Analysis tool by typing fdatool at the
command line.

2. Create two separate FIR frequency filters using the following specifications:

LPF: FIR, Equiripple in the passband and stop band, minimum order, linear phase, filter order
80.
Frequency specifications: sample frequency 44.1 kHz, Fpass = 2500 Hz, Fstop = 4000 Hz.
Magnitude specifications: Apass = 1 dB, Astop = 80 dB

Export these filter coefficients using File→Export with the variable name lpf.

HPF: FIR, Equiripple in the passband and stop band, minimum order, linear phase, filter order
80.
Frequency specifications: sample frequency 44.1 kHz, Fpass = 2500 Hz, Fstop = 4000 Hz.
Magnitude specifications: Apass = 1 dB, Astop = 80 dB

Export these filter coefficients using File→Export with the variable name hpf.

3. Choose one of the professor’s music clips, or choose one of your own and bring it into

MATLAB using wavread. Remember to also import the sample frequency. Use wavplay to
listen to the music. From now on, when using the wavplay function, make ‘async’ the last input
variable to wavplay…this will allow the music to play in the background while you do other
MATLAB work.

4. Filter your music using your low pass filter coefficients as one input to the filter function, then

listen to the filtered result. Does the sound you hear make sense (does it sound as if the higher
frequencies are removed)?

5. Filter your music using your high pass filter coefficients as one input to the filter function, then

listen to the filtered result. Does the sound you hear make sense?

6. Note that the high pass and low pass filters combined make something very close to an all-pass

filter. If that is the case, then when you add the high-pass filtered music to the low-pass filtered
music, and play the sum of the two, it should sound like the original music clip. Does it?

7. Determine if the sum of the impulse responses (coefficients) of the HPF and the LPF together

gives the impulse response of an all-pass filter. Describe your result.
8. Now add the two filters’ impulse responses together to form a new filter, and filter the music

with the sum of the two impulse responses. If this is an all-pass filter, the music should sound
like the original. Does it?

Graphic Equalizer:

You have probably seen a graphic equalizer somewhere…your car has something like a graphic
equalizer…you can adjust the bass (low frequencies) and the treble (higher frequencies). In a true
graphic equalizer, you can adjust the amplitude of a number of ranges of frequency information as the
music is played, most using a slide control as in Figures 1 and 2 below. In this project, we keep it
simple by modeling a bass/treble control only, but not in real-time.

9. Emphasize the bass: take the LPF filter coefficients and multiply them by 1.0, and deemphasize

the treble by multiplying the HPF coefficients by 0.20. Add these scaled impulse responses
together, filter the music, then listen to the result. Is the bass emphasized, with weak treble?

10. Emphasize the treble: take the LPF filter coefficients and multiply them by 0.20, and

deemphasize the treble by multiplying the HPF coefficients by 1.0. Add these scaled impulse
responses together, filter the music, then listen to the result. Is the treble emphasized, with
weak bass?

11. Design a 4-band equalizer for your music. Use filters that have passbands of 0-2 kHz, 2-4 kHz,

4-8 kHz, and 8 kHz and higher. Don’t forget that your Fpass and Fstop settings should match up.
Demonstrate this to your professor using the filtering techniques from this project.

Figure 1: Graphic Equalizer

Figure 2: iTunes Graphic Equalizer

