
EE435: Biometric Signal Processing  

Project 3: Pattern Recognition II (System Design) 

(May be done in groups of ≤ 2) 

Assigned: Tues 1/31/12  Due: Tues 2/7/12 

I. Introduction 

In this project, you will be using the information in the newpeople.dat file that can be downloaded from the course website 

under “Projects”. This file represents information collected from 200 men and 200 women. For each, their height, shoe size, 

hair length and ring size were measured and recorded as a pattern vector. The overall goal of this project is for you to 

develop a minimum distance pattern recognition system that is able to take in a person’s measurements and automatically 

classify that person correctly as a male or female. 

 

Download the newpeople.dat file from the course website. Use the load command to bring this data into MATLAB: 

 
>> load newpeople.dat -ascii 

 

This will bring a variable into your MATLAB workspace called “newpeople”, which is a 400 row x 6 column array. Each 

row contains a pattern vector from a different person. The six columns are laid out as follows: 

 

1
st
 column: the true gender of the individual (class 1 = male, 2 = female)—this is not really a feature, it is ground truth 

2
nd

 column: this column is all zeros to begin, but your code will insert your algorithm’s class number (1 = male, 2 = female) 

 

3
nd

 column: feature #1-height (inches)  (Feature) 

4
rd

 column: feature #2-shoe size   (Feature) 

5
th

 column: feature #3-hair length (inches)  (Feature) 

6
th

 column: feature #4-ring size   (Feature) 

 

 

II. Pattern Recognition System Design: Template-Based Minimum Distance Classifier 

Create a model (or template) for what a man looks like (at least as far as these measurements go), and a model (template) 

for women. The simplest model is to create a pattern vector that is a mean pattern vector. For example: if you average the 

pattern vectors from 10 men, you could call that the model for class “men”, and you would do the same for women. The 

template would then be a 1x4 vector of  

 

[feature#1 avg, feature#2 avg, feature#3 avg, feature#4 avg] 

= [avg_height    avg_shoe_size    avg_hair_length    avg_ring_size]. 

 

Once you have a template for the male class and one for the female class, use the Minimum Distance rule as a decision rule 

to decide which class a new pattern vector belongs to. That is, after you compute the model (template) for class 1 (men) and 

class 2 (women), your system would take an unknown pattern vector and figure out which class model (template) is 

closer…that will be your decision as to which class that unknown pattern vector belongs to. Then, by having the ground 

truth available for each pattern vector, you can measure your system’s accuracy. 

 

Please DO NOT share your algorithm or your results with the other groups. You can always ask me questions. 

For this project: 

 

1. Determine a model (template) for each class. You have four features for each individual. It is possible that one or more 

of the features actually may degrade the performance of the system, so that fewer features may give better results. This 

may or may not be the case, but it should be a consideration; scatter plots may help you decide if one or more of the 

features do not help the problem). If you choose fewer features, this basically means you’re ignoring columns in the 

newpeople matrix. 

 



2. In Project 1, you wrote a distance function that can be used to measure distance between two vectors. Create a new 

function called wdistance.m that will compute the weighted absolute distance and weighted Euclidean distance. The 

weighting is based on the standard deviation of the data—more details are included on the last page of this handout.  

 

Usage: [wdeuc, wdabs]=wdistance(testvector,classmodel,sigma);  

 

Input: testvector is the vector for which you’re trying to determine the class.  classmodel is the vector that 

represents a certain class, and sigma is the vector of  standard deviations of the class. 

Output: weighted distances— wdeuc (weighted Euclidean distance) and wdabs (weighted absolute distance) 

 

Error checking: all three inputs must be vectors, and all must be the same length 

 

3. For your system, determine the distance measure (Euclidean, absolute, weighted Euclidean or weighted absolute) that 

gives you the best performance on the newpeople.dat file…you have the ground truth available so you can test it. 

Performance will depend on the features you used, how you determined your template for each class, the weighted 

distance measure you chose, and the data itself. 

 

Your code should cycle through each row of the newpeople matrix (in a for loop) and for each row (which represents a 

pattern vector), insert either a 1 (if your system decides class 1) or a 2 in the 2
nd

 column. You can then find out how 

many errors you have by checking if the 1
st
 column (ground truth) is equal to the 2

nd
 column (your system’s decision) 

for each row. Since there are 400 rows, your accuracy in % is equal to the number of rows where the 1
st
 and 2

nd
 column 

values are equal divided by 400, multiplied by 100%.  

 

 

Record your performance accuracy for each of the distance measures: 

 

Euclidean (%) Absolute (%) Weighted Euclidean (%) Weighted Absolute (%) 

    

 

4. When you’re done testing and are satisfied that your system design is using the best distance measure, email me your 

newpeople.dat file after you’ve filled the 2
nd

 column with 1s or 2s. Save your newpeople matrix as a .dat file using your 

last name(s) in a command like the following, so I can check your accuracy:   

 
>> save Hack_newpeople.dat  newpeople  -ascii  

 

Note: fill in your name in the file name with no spaces. Depending on which features you use, and how you measure 

distance, your resultant accuracy will probably be different from your classmates. 

 

6. Now you’re ready to test your algorithm with unknown data: download the testpeople.dat file from the course website. 

Use the load command to bring this data into MATLAB: 

 
>> load testpeople.dat 

 

This will bring into your MATLAB workspace a variable called “testpeople”, which is a 2000 row x 5 column matrix 

(note: NOT 6 columns). Consider each row a pattern vector. The five columns are laid out as follows: 

 

1
st
 column: this column is all 0s to begin, but your code will insert your algorithm’s class number (1 = male, 2 = 

female) 

2
nd

 column: feature #1-height (inches) 

3
nd

 column: feature #2-shoe size 

4
rd

 column: feature #3-hair length (inches) 

5
th

 column: feature #4-ring size 

 

Run your pattern recognition algorithm on this data using your chosen distance measure, but note there is NO 

GROUND TRUTH. That is, you don’t know whether each pattern vector represents a male or female. Fill in the first 

column in the testpeople matrix with a 1 or 2, depending on if your system called that row male (1) or female (2). After 

filling in the 1
st
 column of the testpeople matrix, write it into a .dat file using your last name(s), for example: 



 
>> save Hack_testpeople.dat testpeople -ascii 

 

Email me your .dat file, and I will determine your system’s accuracy with the unknown data. 

 

For a writeup, submit your code for the wdistance function, submit a short narrative of how 

you chose your features (should include useful scatter plots), how you determined the best 

distance metric, how you determined your template for each class; what your class template 

pattern values were; what your accuracy was on the newpeople.dat file. Also, send me your 

modified testpeople.dat file so I can determine your accuracy on that. 

  



Distance formulas 

 

Distances between two vectors X and Y:   X = [x1 x2 x3 x4] and Y = [y1 y2 y3 y4] 

 

Absolute Distance: 

 

1 1 2 2 3 3 4 4d x y x y x y x y         

 

Euclidean Distance:  

 

       
2 2 2 2

1 1 2 2 3 3 4 4d x y x y x y x y         

 

Weighted Distance 

Assume Y is the class template (model), and the standard deviations of each of the individual 

four features of Y is given by  1 2 3 4     

 

Weighted Absolute Distance:  

 

1 1 2 2 3 3 4 4

1 2 3 4

x y x y x y x y
d

   

   
     

Weighted Euclidean Distance: 

 
22 2 2

3 31 1 2 2 4 4

1 2 3 4

x yx y x y x y
d

   

        
         

      
 

 

 

Weighted Distance Example:  

 

If the Y template is given by  

y=[ 69.7700   10.7700    1.5952    8.9300],  

 

and the standard deviations of each of the features in Y is given by  

[3.5243    1.5459    1.6275    1.8585],  

 

then the weighted Euclidean distance between an unknown vector  

 

X = [64    12     5     6 ]  

 

and the template Y is computed by: 

 
2 2 2 2

3.5243 1.54

69.7700 10.7700 1.5952 8.9364 12 5 6
3.1

59 1.62

0

75 1.8 8

0
9

5 5
d

          
           

       
 


