
EE435: Biometric Signal Processing

Project 7: Motion Detection and Tracking in Video

Assigned: Tues 3/06/2012 Due: Tues 3/20/2012

This project builds on Project 06, in that it involves video processing and will have you create an output movie (.avi) file.

Motion segmentation typically relies on comparing frames of a video stream to some reference frame where no motion has
occurred. What defines motion is up to the users, but simple noise in an image should not be considered motion. This
project is an extension of the class activity where you imported several registered images into MATLAB and computed the
difference between successive frames as a means of motion detection.

Obtain the ee435_proj07.avi video file from Short Term File Sharing (Division of Engineering and Weapons→Electrical
and Computer Engineering Department→EE435. Write a MATLAB program that will take this video, analyze it, and write
out a new video file that clearly shows detected motion that is present between frames. The new video file will consist of
the old video with detected motion superimposed, meaning (for this project) that the new video file has a red box (1 pixel
wide edges) around detected motion in EACH frame where there is motion detected. The video that is written out should
run at the same speed (frames per second) and have the same dimensions as the original AVI file (i.e., 240 x 360 x 3, 170
frames).

In order to detect motion, you should base your code on the pseudocode contained on the last page of this project
assignment.

Some useful functions (not a comprehensive list):
aviinfo—provides pertinent information about the contents of an AVI file
aviread—allows you to read in an AVI file into an AVI object
avifile—allows you to create an AVI object
movie2avi—allows you to write out an AVI file from a movie object
regionprops—determines the properties of a binary object, such as bounding box, centroid, etc.

If you use the aviinfo function to obtain information about this file, you’d see:

>> b=aviinfo('ee435_proj07.avi')

b =

Filename: 'ee435_proj07.avi'
 FileSize: 44070400
 FileModDate: '19-Feb-2007 08:21:45'
 NumFrames: 170
 FramesPerSecond: 30
 Width: 360
 Height: 240
 ImageType: 'truecolor'
 VideoCompression: 'none'
 Quality: 0
 NumColormapEntries: 0

This shows that there are 170 frames (b.NumFrames = 170), each frame is 360 cols (b.Width) by 240 rows (b.Height), is
stored as 30 frames per second (b.FramesPerSecond = 30), and has not been compressed.
If you use the aviread function to read in a movie object

>> a=aviread(('ee435_proj07.avi'))
a =
 1x170 struct array with fields:
 cdata
 colormap

Recall from Project 06 that in the movie structure, each frame is stored with a cdata component and a colormap component
in the movie structure. The cdata component is the actual color image frame data, and the colormap component contains the
colormap for each frame, but is NULL ([]) for true color images. To get to any of the individual image frames and view it
after reading in the avi file, for example the 37th frame, you would type commands like:

 >> fr = a(37).cdata;, figure(1),imshow(fr)

I. DrawBox Function

Write a function that will perform the following:

1. DrawBox: Takes an input color image and outputs a copy of the same image with a red rectangle drawn
somewhere within it, based on the input parameters, or if the input is grayscale, will draw a white rectangle. For
color images, it sets the red component values where the rectangle should be to 255, AND sets the green and
blue components to 0 in the same locations. For grayscale images, it sets the rectangle locations to 255.

Usage: y=DrawBox(x,BB)

Inputs:
 x The input color or grayscale image .

BB The bounding box vector obtained from the regionprops function, which is of the form:
 [top_left_col_num top_left_row_num num_cols num_rows]

top_left_col_num col coordinate of the top left corner of the bounding box
top_left_row_num row coordinate of the top left corner of the bounding box

 cols number of cols in the bounding box
 rows number of rows in the bounding box
Output:

y The output color image w/a 50 row x 30 column red box drawn in it. The upper left
corner of this box is the upper left corner coordinates defined by the bounding box (if
the input was color), or an output grayscale image with a white box drawn around the
motion (if the input video was grayscale) or y=[] for an error.

Error checking:
This program should check to ensure that the input image is either color or grayscale using only the depth (that
is, the number of planes of data should be 1 or 3). If not, return y=[] and output an appropriate error message.
Also, the values of the input bounding box should be integer valued. If not, convert them to integer inside the
function and output a warning message.

Note 1: This function should be able to handle the case where the incoming bounding box is NULL. In this
case, the output image is the same as the input image (no attempt to draw a box). You can check if the bounding
box is null by checking its number of elements (using the numel function)…a NULL bounding box has 0
elements.

Note 2: The output image MUST be the same size as the input image. Do NOT attempt to draw a bounding
box that would fall off the edges of the original input image frame, because it will make the output image larger
than the input image…this will cause a problem when trying to reform the frames into a new movie. This means
that the max row number and column number to set the values in the output image is determined by its
dimensions.

Note 3: Do NOT use the MATLAB rectangle function to draw your box. Instead, just use 4 lines of code to set
the values of the pixels along each side of the box.

II. Motion Detection

Apply the steps listed in the introduction above to process the “ee435_proj07.avi” video for motion detection. Write out
your result into a new avi file using movie2avi, with NO compression. Demonstrate that your avi file displays the motion
detection using a non-MATLAB movie player, such as Windows Media Player, and have the professor initial here:
___________.

Submit your m-files from Parts I and II, and demonstrate the avi file you created for Part II to the
professor using a non-MATLAB movie player such as Windows Media Player.

Pseudocode for Processing “ee435_proj04.avi”

Important note: When you are performing image subtraction on a frame-by-frame
basis, you should NOT be subtracting color image frames—convert them to grayscale
first!

% read in the video
a=aviread('ee435_proj07.avi')
a1=a; % you will write processed video back into “a1” frame-by-frame

%compute a background image to compare all frames to...for example,
% take average of 1st 5-10 frames. For the background, there should be no
% apparent motion in the frame.
%
% You can use a for loop, but convert the frames you use to grayscale and
% double (using rgb2gray and double()), add them up and divide by
% the number of images you’re averaging.
%
bkgd= … % leave bkgd as a double
for k=1:170
 k % this displays what frame # you’re on

grab current frame from video file
convert current frame to gray and then to double

 compute absolute difference between this frame and background (bkgd)
threshold the absolute difference
create 2 structuring elements using strel, one noticeably larger than the other

 erode to get rid of most of the noise using the smaller structuring element
dilate to expand image size using the larger structuring element
use bwlabel to create a label image
use regionprops to compute bounding box and area
loop through all objects, and for largest object, that will be the bounding box to draw (note: if

no motion is detected, bwlabel will return a zero image, and regionprops will
return a NULL object).

draw a bright red 50 row-by-30 column box in the color frame (note: only if some motion is
detected)

display each frame as you’re cycling through all 170 frames (so you can visually check them)
end

% check out the movie you created
movie(a1,1,30) % show it 1 time, 30 frames/sec
% for fun, try this:
movie(a1,-1,30);

% write out your result as an avi video file (use your own names)
movie2avi(a1,'Deane.avi','FPS',30, 'COMPRESSION', 'none');

