
EE435: Biometric Signal Processing
Project 8: Fingerprint Minutiae Segmentation

Assigned: Tues 3/20/12 Due: Fri 3/30/12

This project will have you extract some of the minutiae present in a fingerprint image. The images provided are high-
resolution fingerprint images (~ 1200 dpi) from the Hong Kong Polytechnic University (PolyU HRF Database,
http://www.comp.polyu.edu.hk/~biometrics/HRF/HRF.htm). You may work in groups of up to 2 people for this project.

I. Preliminaries

1. Download the set of fingerprint images from the course website on the Projects webpage under Project 08. View

them to get a feel for the level of detail. The file names have the form: subject#_finger#_image#.jpg, where the
subject # indicates a particular person, finger # indicates a particular finger on that person, and image # indicates a
particular image of that finger on that person.

2. Before processing to locate minutiae, the image must be preprocessed down to a binary skeleton, with ridges one

pixel wide. Write a function called “MakeSkeleton.m” that will take in a grayscale fingerprint array, and return its
binary skeleton. The process to make this happen should include the following steps:

a. Similar to what we had done to find the pupil in an iris image, perform some preliminary steps to make

the ridges stand out. Keep in mind that the ridges are dark in a typical fingerprint image (like these), and
we wish to make them stand out as large values so that thresholding will be able to create a binary image
where the ridges are 1s. To do this, invert the grayscale image, then convert the inverted image to type
double and square each value.

b. Threshold the result from step (a) using a threshold value equal to the overall mean of this squared image.

c. “Clean” the result from step (b), using bwmorph with the ‘clean’ option. This removes single 1s from
the binary image.

d. Perform a morphological “open” on the result from step (c) using the bwmorph function. Recall that an

“open” is a combination of erosion followed by dilation.

e. Perform a morphological “close” on the result from step (c) using the bwmorph function. Recall that a
“close” is a combination of dilation followed by erosion.

f. Create the skeleton using bwmorph with the ‘thin’ option along with the Inf option (note: Thinning

removes a layer of 1s from the boundaries of objects. With bwmorph, you can specify how many times
you want the thinning to be run. Inf implies continue thinning until objects are one pixel wide). The
result of this step will be the binary skeleton.

Usage for MakeSkeleton:

 y=MakeSkeleton(x);

Input: x is the uint8 grayscale fingerprint image (after being read into MATLAB)
Output: y is the skeleton image derived from x (it will be type logical)

Error checking: the input must be a uint8 grayscale array (1 plane of data). If not, the output should be
null and an error message should appear in the command window.

3. There are a number of possible types of minutiae that we could look for in the skeleton image, including ridge

endings, bifurcations, islands, etc. For the first part of this project we will locate bifurcations (ridge splits into two
ridges). To find the bifurcations, we will use a variation of correlation. Use the following steps.

a. Download the m-file called bifurcations.m from the course website. Run this program. It will create a
3x3x16 array called bifur, consisting of 16 binary templates of what a bifurcation would look like in a
3x3 neighborhood of a skeleton image (as you saw in the PowerPoint handout on fingerprints).

b. Create an array of all zeros the same size as the input grayscale image. You will use this array to keep
track of the locations of the bifurcations found by setting certain of these pixels to a value of 1. I’ll refer
to this as the location array.

c. To actually determine the location of the bifurcations, we will use 3 for loops (so it will be a relatively

slow process). Two of the loops will be through each interior row and interior column of the skeleton
image, and the third loop will be through each of the 16 bifurcation templates. Here, the term interior
means that you should NOT loop through the first 5 rows and columns, or the last 5 rows or columns of
the skeleton image (we do not want to consider a neighborhood that is off the edge or might have been
affected by being near the edge of the image).

Inside the triple loop, extract a 3x3 neighborhood at each location. Compare those 9 values in each 3x3
neighborhood to each of the 16 bifurcation templates. If all of the values in any of the templates match
the neighborhood EXACTLY, then place a 1 in that location in your location array from step (b).

At this point after the looping, the location (row #, col #) of each bifurcation in the skeleton image is
based on the location of 1s in the location array. Now you will display that information by enclosing them
in a red box or circle.

d. Indicate that you found the bifurcations by highlighting each location in red. Draw either a 5x5 red box
or a circle of radius 3 around each location in the binary skeleton image. Remember, in order to display
color, you should have 3 planes of uint8 data. To begin, you should convert the skeleton image to uint8
with the 1 values changed to 255.

If you choose to draw a 5x5 box, I suggest you modify your DrawBox function from Project 7. If you
choose to draw a circle of radius 3, I suggest you use the create_shifted_circle function. Use
one of these methods to create the color image where the bifurcations are highlighted in red. For one of
the fingerprint images, create a well-labeled 1x2 subplot that shows the original grayscale image and this
bifurcation color image. By well-labeled, I mean that the image name should be in the title of the original
fingerprint subplot and “Bifurcations” should be in the title of the bifurcation subplot. Print out this figure
in color and turn it in as part of your writeup. Ensure that when you print it, that it is easy to see the
circles or boxes (expand the figure to full screen). Note that for this step, a HARD COPY COLOR
FIGURE IS REQUIRED.

e. Run the same bifurcation location algorithm on another image of the same finger and view the results. On

another well-labeled 1x2 subplot, display the bifurcations of one of the images on the left and the
bifurcations of the other image of the same finger on the right. Print this out and turn it in with your
writeup. Note that for this step, a HARD COPY COLOR FIGURE IS REQUIRED.

4. Now write a new program to find ridge endings. You’ll use much of the same code as before, except that there are

different templates to use for ridge endings. Create a new m-file called ridgeendings.m, based on my bifurcations.m
code, which will generate the correct number of ridge ending templates. The net result of this step is that you will have
a color skeleton image that shows the locations of ridge endings in a green 5x5 square or circle of radius 3.

5. Choose a different fingerprint image, and create a well-labeled 1x2 subplot. The left window is the original grayscale
fingerprint image and the window on the right is the color skeleton image with the green ridge ending locations
highlighted. Print out a color hardcopy of the 1x2 subplot. Ensure that when you print it, that it is easy to see the circles
or boxes (expand the figure to full screen). Note that for this step, a HARD COPY COLOR FIGURE IS
REQUIRED.

Answer the following questions.

6. Take a look at the right subplot from the 1x2 subplot created in step 3.d. above (an original fingerprint image and its

bifurcations). Does your code highlight ALL of the bifurcations in the skeleton image that it should have? If not, why
not?

7. Take a look at the 1x2 subplot created in step 3.e. above (two bifurcation images from two fingerprint images of the

same finger). Do the same bifurcations present in the same locations in BOTH images of the same finger show up?

8. If you felt that the algorithm found fewer bifurcations or ridge endings than it should find, what could be changed to
find more of these (in general terms)?

9. Take a look at the 1x2 subplot created in step 5. above (an original grayscale fingerprint image and its ridge endings).
Did your algorithm find all the ridge endings? What changes to your algorithm might you make to determine if there
were any island minutiae (short ridges)? Crossover minutiae (two parallel ridges joined by short ridge segment)?

10. Now create a color image that is a combination of one of the grayscale fingerprint images, but has its skeleton

embedded as red lines. Print this out in color and turn it in with your report. How well did this algorithm skeletonize
the original fingerprint image? Did the sweat pores on the ridges have any effect on the skeletonization? Note that for
this step, a HARD COPY COLOR FIGURE IS REQUIRED.

11. Now that you have the locations of bifurcations and ridges, how could you use these locations to compare fingerprints

for recognition (in general terms)?

For this project, turn in the three hardcopy 1x2 subplots in color (steps 3d, 3e and 5), the color fingerprint image with its red
skeleton embedded (step 10), and answer the questions.

