
EE435: Biometric Signal Processing

Project 09: Face Recognition
Work in groups of no more than 2 people.

Assigned: Tue 3/27/12 Due: Wed 4/3/12

Part I: Class Face Database Collection

1. To do: With the professor, obtain 10 pictures from each member of the class. These 10 images should have different

facial expressions, or looking off in different directions. For example: normal, smile, frown, surprised, scared, head
tilted slightly up/down/left/right, etc. Each group must process the images of its group members in accordance with the
following steps (these steps are illustrated in the next page of this assignment):

a. Each group will collect the images from each group member using the instructor’s setup. Each group will

process the group’s images in accordance with the following steps.
b. Change the color images to gray (using rgb2gray).
c. Manually extract a square subimage from the face image that encompasses the entire face (like those in

the AT&T database (some examples are below). The exact size of this square image does not matter, but
it is important that the face is enclosed with little, if anything else, besides the face. Use your extract
function from Project 01.

d. Use the MATLAB imresize function to adjust the size of your square image to 100 rows × 100 columns.
In the imresize function, use “bicubic” interpolation, and it will take a square image that is not 100 × 100
and can make it 100 × 100.

e. Write out this 100×100 grayscale bitmap (.bmp) image (be sure to make it uint8). The filenames you use
on these images are VERY IMPORTANT. For each image, the filename will include the subject number
given below and the image number (e.g. s01_01.bmp, s01_02.bmp, …, s01_10.bmp). If you don’t get the
image filenames correct, I will send them back to you to fix. If the images have too much or too little
besides the face, I will send the faulty image back to you to fix.

f. Provide these 100×100 images to the professor, who will pass them out to all of the other groups after all
images have been collected from all groups. They will be provided in a training set (65 images) and a test
set (65 images).

The steps to creating these images are laid out in the block diagram on the next page.

Name Subject Number Name Subject Number
Deane s01 Murthy s08
Goetz s02 Song s09
Hack s03 Tortorich s10
Herbert s04 Yen s11
Lowery s05 Zelmat s12
Marion s06 Juriga s13
McIntyre s07

Part II: Eigenface using the AT&T Face Database.

1. To do: Download the EE435_Project09_Eigenface.zip file from the course website. It includes the AT&T face

database, which you will use in the first portion of this project, and several MATLAB m-files. The database comes in
two parts; the training set and the test set. When the file is unzipped, you will notice that there are two directories: one
called training_set and another one called test_set.

There are 40 subjects in this face database, and 5 images of each subject are in the training set (a total of 200 images)
and 5 images of each are in the test set (200 images). The image filenames tell you the subject number and the image
number for that subject. For example, in the training set folder, there is a file with name s37_03.bmp. This image is of
subject 37, and is the 3rd image of that face. The image numbers for each subject in the training set are labeled 01-05,
and are labeled 06-10 in the test set. Note that the eigenface algorithm requires that the images be square, and all these
images are 100 rows-by-100 columns.

Again, in addition to the images in each folder, there are MATLAB m-files for your use.

2. To do: Open the file called create_eigenfaces.m in the training_set directory.

This program is written to take all 200 of the images in the training set folder (40 subjects, 5 images each) and create a
database of 200 eigenfaces (that is, it creates a set of 200 eigenfaces), using the procedure discussed in class (that is,
using eigenvalues, eigenvectors and covariance). Each of the 200 original face images in the training_set directory can
be represented exactly by some linear combination of all 200 eigenfaces. That is, if face1 is the first original face
image, and if E1, E2, … E200 are the 200 eigenfaces, then face1 can be written as:

€

face1 = w1E1 + w2E2 + ...+ w200E200

and the feature vector for face1 is:

€

feature1 = w1 w2 ... w200[]

where w1, w2, … w200 are scalar values (called weights) such that each eigenface provides one feature for each face
image. A 200-element pattern vector can be formed by the weight each eigenface makes up in forming any face image
in the database. The pattern vector here is sometimes referred to as a weight vector.

When you run create_eigenfaces.m, this program will create a feature matrix variable named feat, which has 200 rows
(one for each image in the training set) and 201 columns. Each row contains a pattern vector (or feature vector) for one
of the face images; for example, the 1st row in feat contains the pattern vector for the 1st face image (image named
“s01_1.bmp”). In each row, the first column records which subject that row corresponds to; for example, the first 5
images in the training set came from the 1st subject. This means that rows 1-5 of the feature matrix represent the 1st
subject’s images, so the first number in each of these rows is 1. The remaining 200 columns of each row represent the
actual feature vector, which is the weight of each eigenface to reconstruct that particular face image.

Note also, that when create_eigenfaces.m runs, Figure (1) shows a display of the first 12 of the 200 face images in the
training set in one figure window; Figure (2) shows the average (mean) face of all 200 faces; Figure (3) shows the first
12 of the 200 eigenfaces; and Figure (4) is a plot of the 200 eigenvalues corresponding to each eigenface…larger
eigenvalues mean that a given eigenface is more important in reconstructing any face.

To do: Run the create_eigenfaces.m program in the training_set directory… this will create the eigenfaces (in variable
Eimage) and the feature matrix (in variable feat—these are the weights for each eigenface for each face image in the
database), which will be used in the following steps.

3. To do: Open the file called face_reconstruction.m in the training set directory.

This function will reconstruct any face image using the eigenfaces and the feature vectors. To use this function, you
must provide it 4 inputs: (1) the filename of the face image you wish to reconstruct; (2) the eigenimages (already in
variable Eimage); (3) the meanImage from the training set (already in variable meanImage); and (4) the number of
features that will be used in reconstruction (variable M_prime—you set this integer value). The max value for M_prime

for this example is 200, and if you use all 200 eigenfaces, you should get the exact reconstruction of the input face
image, if the image was in the training set. If you use less than 200, the quality of the reconstruction will drop. This
program outputs a figure containing the original image, the reconstructed image, and a plot of the weight vector for the
reconstructed face (that is, the weight for each eigenface you’ve chosen to use in the reconstruction).

To do: Pick any one face image in the training set. Perform reconstruction on that face using 10 eigenfaces, 20
eigenfaces, 50 eigenfaces, 100 eigenfaces and 200 eigenfaces. Write code to display the original face being
reconstructed as well as the 5 reconstructions stated above in a 3x2 subplot. Turn in the subplot, annotating the # of
eigenfaces in each reconstruction in the xlabel of each subplot, and the name of the original image in the title.

4. Also in the training_set directory is a function called eigenface_movie. If you input the name of one of the image files

to this function, you will see how the face is formed as more eigenfaces are used in the reconstruction, from 1 up to
200 eigenfaces. This function calls the face_reconstruction function 200 times, each time with one additional eigenface
added to the mix.

To do: Choose one image filename, input that to the eigenface_movie function and watch the result.

5. To do: Change directory to the test_set directory. Open the file called face_recognition.m.

This function will find the face image in the database that any input image is closest to, by finding the image in the
database whose features are closest to it (that is, the feature vector for an input image is computed, and the Euclidean
distance is computed to all faces in the database). To use this function, you pass it 5 inputs: (1) the filename of the face
image you wish to recognize; (2) the eigenimages (already in variable Eimage); (3) the feature vector matrix for the
training set (already in variable feat); (4) the meanImage from the training set (already in variable meanImage); and (5)
the number of features that will be used in reconstruction (variable M_prime—you set this integer value). There is
another input it could take that is optional (called face), but we will not use it. The max value for M_prime for this
example is again 200. When it runs, Figure (1) gives a display of the face image it is trying to recognize along with the
reconstructed image using the eigenface database and the feature vector computed for the input face. Also, Figure (2)
displays a plot of the Euclidean distance of the input face’s pattern vector to all of those in the database. Note that if
this input face image was NOT part of the original training set (that was used in constructing the eigenface database),
the reconstructed face may not look much like the face it is trying to recognize. Note also that this function does NOT
decide if an input face is in the database, only which face in the database is closest.

To do: The face_recognition function calls a function that computes the Euclidean distance between two pattern
vectors. You must write the code for this function (it must be called euclidean_distance…feel free to modify your
distance function from Project 01) to make the face_recognition function work. After you create the
euclidean_distance function, run the face_recognition function on five random faces in the training set, using ALL 200
eigenfaces (M_prime = 200). In each case, the Euclidean distance that face_recognition returns SHOULD BE 0.0
(note: Euclidean distance is returned in variable “ed”). This is a partial test to ensure that your Euclidean distance
function works. Note that the face_recognition function will return the subject that is the closest match from the
database (e.g., it will return ‘s01’ if subject #1 is the closest). That means that if you compare the first 3 characters of
the input filename to the returned subject (returned in variable “subj” by face_recognition, compared using strcmp),
you can tell whether or not an error has been made.

To do: Write a MATLAB program that will perform face recognition on all 200 faces in the test set, and record the
accuracy rate. Here, recognition means: “does the closest subject number in the database match the subject number you
are trying to recognize?” Use all 200 eigenfaces (M_prime = 200). Then rerun the recognition using only 150
eigenfaces, then 100, then 50 and record the accuracy for each.

The next page has some sample code that you can use to perform face recognition on all of the images in one loop.

dos(‘dir /B *.bmp > filelist.txt’); % list the names of all bmp images in this directory in a text
file
fid=fopen('filelist.txt'); % open the text file of filenames for reading
errors = 0;
num_images=0;
while ~feof(fid) % perform a while loop as long as you’re not at the end of the list of filenames
 filename=fgetl(fid); % get the next filename
 [subject,ed]=face_recognition(filename, Eimage,feat,meanImage,200);
 … here, use strcmp to check to see if subject == 1st 3 characters of filename

num_images=num_images+1;
end
fclose(fid);
…do something here to compute accuracy

Part III: Eigenface using Our Class Database (Note: This part must wait until all of our class pictures are processed)

1. To do: Download the new training_set and test_set directories from the course website (which now includes the class’

faces).

2. To do: With the new class face database, rerun create_eigenfaces.m in the training_set directory to create the

eigenfaces and the feature vector matrix using the class set of training faces.

3. To do: Choose one image of each person in your group in the training_set directory, and reconstruct that face using 10

of the eigenfaces. Create a 1 x 2 subplot for each of your group’s images, with the original image on the left and the
reconstructed face on the right. Include this (these) subplots in your report. Give a suitable title.

4. To do: After running create_eigenfaces, find the accuracy of this eigenface algorithm on all face images in the test_set

directory, using all 65 eigenfaces (M_prime). Rerun the recognition using only 20, 10 and 5 eigenfaces and record the
accuracy.

5. To do: Get from your professor a face image that has been assigned to you but is NOT from students in this class.

Process it to be 100x100 grayscale images of the face. Perform recognition with this image using all 65 of our classes’
eigenfaces. Submit the subplot from the face_recognition function that shows the original image and the reconstructed
image, and include them in your report.…who from the class do these famous/infamous people look most like?

6. To do: In the space below, discuss the limitations of the Eigenface algorithm.

For a writeup,
Include images/code/answers to questions.

