
Data Formats and Arithmetic Operations∗

Charles B. Cameron

January 28, 2005

1 Unsigned Numbers

An unsigned n-bit binary number

x = bn−1bn−2 . . . b2b1b0 (1)

can be interpreted as

x =
n−1∑

i=0

bi2i (2)

where the bits bi can take on the values 0 or 1.
For example, if

x = 1001101111010110 (3)

then

x = 1× 215 + 0× 214 + 0× 213 + 1× 212 + 1× 211 + 0× 210 + 1× 29 + 1× 28

+ 1× 27 + 1× 26 + 0× 25 + 1× 24 + 0× 23 + 1× 22 + 1× 21 + 0× 20

= 39 894decimal. (4)

An alternative approach that can be easier to apply in practice is to regard
the binary number as consisting of clusters of four bits, which means that there
are 24 = 16 possible combinations for each cluster. In other words, the four-bit
clusters are equivalent to hexadecimal (base 16) digits. The correspondence
between decimal numbers, hexadecimal digits, and four-bit binary equivalents
is shown in Table 1.

Therefore we could rewrite the number in (3) as

x = 9BD6 (5)

∗Course notes for EE461 Microprocessor-based Digital Design

1



Decimal Hexadecimal Binary Decimal Hexadecimal Binary
Equivalent Digit Digit Equivalent Digit Digit

0 0 0000 8 8 1000
1 1 0001 9 9 1001
2 2 0010 10 A 1010
3 3 0011 11 B 1011
4 4 0100 12 C 1100
5 5 0101 13 D 1101
6 6 0110 14 E 1110
7 7 0111 15 F 1111

Table 1: Correspondence between hexadecimal digits and their four-bit binary
equivalents

and this can be interpreted by the hexadecimal equivalent of (2). For an n-digit
hexadecimal number

x =
n−1∑

i=0

hi16i (6)

where hi is one of the 16 hexadecimal symbols shown in Table 1.
Thus we have

x = 1001 1011 1101 0110
x = 9BD6

= 9× 163 + 11× 162 + 13× 161 + 6× 160

x = 39 894. (7)

Naturally this result is the same as that of (4).
The formula in (2) can be extended to encompass binary numbers with a

“binary” point within them. If we consider an n-bit binary number

x = bn−1−mbn−2−m . . . b2b1b0.b−1b−2 . . . b−m+1b−m

with m bits to the right of the binary point then our n-bit number x now can
be interpreted as

x =
n−1−m∑

i=−m

bi2i. (8)

If we choose m = 5, for example, then in this format the bit pattern of (4)
has a different interpretation. The number itself now can be written as

x = 10011011110.10110 (9)

2



whose interpretation is

x = 1× 210 + 0× 29 + 0× 28 + 1× 27

+ 1× 26 + 0× 25 + 1× 24 + 1× 23

+ 1× 22 + 1× 21 + 0× 20 + 1× 2−1

+ 0× 2−2 + 1× 2−3 + 1× 2−4 + 0× 2−5

x = 1246.687 5decimal. (10)

As before, we can group the binary digits into four-bit clusters and rewrite
the problem using hexadecimal:

x = 100 1101 1110.1011 0
= 4DE.B0hexadecimal

= 4× 162 + 13× 161 + 14× 160 + 11× 16−1 + 0× 16−2

x = 1 246.687 5decimal

which of course is the same as the answer in (10)

2 Signed Numbers

In computers, signed numbers are almost invariably represented using the two’s-
complement system. In this system the binary string

x = bn−1bn−2 . . . b2b1b0

can be interpreted as

x = −bn−1 × 2n−1 +
n−2∑

i=0

bi2i. (11)

That is, the first bit is considered to have a negative weight, whereas the rest
have a positive weight.

With this format, the same string we have considered before, that is,

x = 1001101111010110 (12)

can be interpreted as

x = −1× 215 + 0× 214 + 0× 213 + 1× 212

+ 1× 211 + 0× 210 + 1× 29 + 1× 28

+ 1× 27 + 1× 26 + 0× 25 + 1× 24

+ 0× 23 + 1× 22 + 1× 21 + 0× 20

= −25 642decimal. (13)

3



As with unsigned numbers, we can move the binary point in signed numbers,
too. If we consider an n-bit binary number

x = bn−1−mbn−2−m . . . b2b1b0.b−1b−2 . . . b−m+1b−m

with m bits to the right of the binary point then our signed n-bit number x now
can be interpreted as

x = bn−1−m × 2−n−1−m +
n−2−m∑

i=−m

bi2i. (14)

If we choose m = 5, for example, then in this format the bit pattern of (4)
has yet a different interpretation. The number itself now can be written as

x = 10011011110.10110 (15)

whose interpretation is

x = −1× 210 + 0× 29 + 0× 28 + 1× 27

+ 1× 26 + 0× 25 + 1× 24 + 1× 23

+ 1× 22 + 1× 21 + 0× 20 + 1× 2−1

+ 0× 2−2 + 1× 2−3 + 1× 2−4 + 0× 2−5

x = −801.3 125decimal. (16)

As before, we can group the binary digits into four-bit clusters and rewrite
the problem using hexadecimal. However, the hexadecimal digits below 8 (1000
in binary) represent positive numbers, yet we know from the fact that its leading
bit is a 1 that our number is a negative. So we need to pad the hexadecimal
digit with extra 1 bits on its left side. So the pattern 100 should be padded to
1100binary = Chexadecimal.

x = 100 1101 1110.1011 0

= −1× 210 + 00 1101 1110.1011 0

= −1× 210 + 0DE.B0hexadecimal

= −1× 210 + 0× 162 + 13× 161 + 14× 160 + 11× 16−1 + 0× 16−2

x = −801.3 125decimal

which of course is the same as the answer in (16)

3 Binary-Coded Decimal Numbers

A number like 81.7decimal requires an infinite number of bits to be represented in
binary and, similarly, an infinite number of hexadecimal digits to be represented
in hexadecimal.

81.7decimal = 51.B3̇ = 0101 0001.1011 0̇011̇. (17)

4



This is acceptable for scientific calculations but highly objectionable to accounts,
who want the pennies to add up exactly. As a result, binary coded decimal
(BCD) is frequently used to store decimal numbers.

Of the 16 four-bit patterns shown in Table 1, only the first 10 are used.
For example, the number 81.7 would be represented in BCD as

81.7decimal = 1000 0001.0111BCD

.

4 ASCII characters

The American Standard Code for Information Interchange (ASCII) is a seven-
bit code for representing a mixture of printable and unprintable characters.
Tables for ASCII characters are very easily found on the Internet. Here is the
URL of one such table that is valid at the time of writing:

http://www.lookuptables.com.
Because the use of eight-bit storage units is so widespread, there exist a

number of 8-bit extensions to the ASCII code. Unfortunately, they are not all
the same, but they do make additional characters available to users.

Standard ASCII codes often have an eighth bit added to provide a parity
check. These can be chosen to render an even number of 1 bits in the 8-bit
word (even parity), and odd number of 1 bits in the 8-bit word (odd parity),
or a value of no particular parity at all by arbitrarily inserting either a 0 or a
1 (no parity). The corruption of an odd number of bits will cause the parity to
be incorrect when read (if it is used at all), permitting the error to be detected,
although not corrected.

5 Addition and Subtraction

Processors ordinarily pay no attention to the format of the numbers they add
beyond the limitations imposed by a finite word length. Consider the fol-
lowing two bit strings. The first is the same as the one in (3), namely x =
1001 1011 1101 0110. The second is y = 0101 0110 1101 1010.

When added together in hardware, the result is as shown below:

x 1001 1011 1101 0110
+y +0101 0110 1101 1010

z 1111 0010 1011 0000

We have already examined four different interpretations of x. Similarly,
y and z can be interpreted in the same four different ways. You should be
able to verify the four interpretations of y and z, which are gathered in Table
2. Despite the fact that we can interpret the operands and the result in four
different ways—and others are possible if we move the binary point around,—all
the answers are correct. It is for this reason that the two’s-complement number

5

http://www.lookuptables.com�


As done by binary hardware
x 1001 1011 1101 0110

+y +0101 0110 1101 1010
z 1111 0010 1011 0000

Unsigned integers
x 39 894

+y +22 234
z 62 128

Unsigned fractions with five frac-
tional bits

x 1 246.687 5
+y +694.812 5

z 1 941.5000

Signed integers
x −25 642

+y +22 234
z −3 408

Signed fractions with five frac-
tional bits

x −801.312 5
+y +694.812 5

z −106.500 0

Table 2: Four ways of interpreting a single addition problem. It is easy to check
that each interpretation is as shown here and that the sum is correct in all four
cases.

6



system is so helpful: many interpretations of the problems are possible and the
same hardware performs the arithmetic correctly in every case.

7


