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The pulse width modulator relies on Timer 2 for its operation. However,
whereas interrupts generated by Timer 2 use the Timer 2 Postscaler, the pulse
width modulator does not. For this reason, the period of the pulse width mod-
ulator is given by

TPWM = 4(y + 1)TOSC x (1)

where

x = the Timer 2 prescaler value.
x ∈ {1, 4, 16}, (2)

and

y = PR2, the Timer 2 period register value
y ∈ [0, 255].

(3)

For example, with fOSC = 4 MHz, x = 4 and y = 99, TPWM = 400 µs.
The pulse width modulator’s output remains high for time

THIGH = w TOSC x (4)

where

w = CCPRnL:CCPnCON〈5 : 4〉) (5)

and

n =

{
1 for pulse width modulator 1
2 for pulse width modulator 2.

(6)

The duty cycle of the pulse width modulator can be worked out by finding
the ratio of on-time to period:

η =
THIGH

TPWM

=
wTOSCx

4(y + 1)TOSCx
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η =
w

4(y + 1)
. (7)

Now because w can take on values in the range [0, 1023] and y can take
on values in the range [0, 255], the duty cycle can take on values in the range
[0, 1023/4] or 0 to 255.75. All values of the duty cycle that are larger than 1,
that is, 100%, are indistinguishable. So unless we choose y = 255, some values
of w will generate more than a 100% duty cycle. This is equivalent to saying
that fewer than 10 bits of accuracy is actually available.

For example, if we choose y = 127 then all values of w ≥ 512 produce
η = 100% and only 9 bits of accuracy are effective.

To get maximum accuracy requires a specific value of y. This limits the
use of Timer 2 for generating periodic interrupts. Whereas it is ordinarily true
that this period can be chosen from among 3 × 256 × 16 = 12, 288 different
values,1 the restriction that y = 255 reduces this to 3×16 = 48 different values.
Furthermore, the value of the prescaler x also influences the period TPWM of
the pulse width modulator.

In short, there are numerous constraints which influence our ability to get
useful periods between Timer 2 interrupts at the same time we get useful para-
meters for pulse width modulation.

An example will illustrate some of the tradeoffs.

Example 1

Suppose fOSC = 4 MHz and we want to know when 1 s has passed so that
we can initiate an analog-to-digital conversion. At the same time, we want to
generate a pulse width modulated signal with a period of 1 ms with 10 bits
accuracy.

To get 10 bits accuracy, we require PR2= 255, as shown above. Now

TTimer 2 Interrupt = 4TOSC x (y + 1)(z + 1) (8)

where x and y are as defined in (2) and (3) and

z = the Timer 2 postscaler value
z ∈ [0, 15].

(9)

Because our desire for a full 10 bits of accuracy dictates that PR2= y = 255,
we suppose that after some number n of Timer 2 Interrupts, 1 s will have passed

1There are three choices for the prescaler x, 256 choices for y =PR2, and 16 choices for
the postscaler z.
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and so:

nTTimer 2 Interrupt = 4TOSC x (255 + 1)(z + 1) (from (8))
= 1024 (250 ns) x (z + 1)

1 s = (256 µs)x (z + 1)
x (z + 1) = 3906.25

There are no integral solutions to this equation for x and z, even ignoring the
constraints placed on them.

We could choose x = 4 and z = 0. This would lead to interrupts every
1.024 ms, an amout of time which does not divide evenly into 1 s. If the error is
not important, we could ignore it. If it is important, we could treat the inter-
rupts as if they occurred every 1 ms and accumulate the error every interrupt.
Whenever the error exceeds 500 ns, we could add 1 to our interrupt counter and
subtract 1 ms from the accumulated error. In this manner we would never be
off by more than 500 ns.

An alternative would be to abandon the hope of achieving 10 bits of accuracy
and insist that the Timer 2 Interrupts occur, say, every 1 ms. For this alternative
we simply choose PR2= y as big as we can get it. This requires making x (the
prescalar value) and z (the postscaler value) as small as possible:

TTimer 2 Interrupt = 4TOSC x (y + 1)(z + 1) (8)

y =
TTimer 2 Interrupt

4TOSC x (z + 1)
− 1

=
1 ms

4(250 ns) x (z + 1)
− 1

=
1000

x (z + 1)
− 1 (10)

By choosing x = 4 and z = 0 we find that y = 249. Note that we could not pick
x = 1 since that would require y = 999, a number too large to fit in the 8 bits
of the PR2 register. As it happens, we chance also to get the pulse repetition
period we desire, although this will not always be the case:

TPWM = 4(y + 1)TOSC x (from (1))
= 4(249 + 1)(250 ns) 4
= 1 ms.

THIGH = w TOSC x (from (4))
= w (250 ns) (4)
= w (1 µs).
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Now values of w ≥ 1000 lead to a 100% duty cycle so, for practical purposes,
we should limit the range of w to w ∈ [0, 1000].

Let us now determine the number of bits of accuracy that can be achieved
by the pulse width modulator. The 10-bit value w which can be used to control
THIGH should be constrained so that

η =
w

4(y + 1)
≤ 1. (from (7))

In other words, the maximum value wmax for w is given by

wmax = 4(y + 1). (11)

But from (1)

TPWM = 4(y + 1)TOSC x

so

wmax = 4(y + 1) =
TPWM

TOSC x
.

or

wmax =
fOSC

x fPWM
. (12)

Because the number of bits needed to represent a number is given by its
logarithm to the base 2, we have

# of bits of resolution = log2

(
fOSC

x fPWM

)
(13)

or, equivalently,

# of bits of resolution =
log

(
fOSC

x fPWM

)

log 2
=

ln
(

fOSC
x fPWM

)

ln 2
. (14)

The PIC16F87xA data sheet states the maximum number of bits for the
pulse width modulator as

# of bits of resolution = log2

(
fOSC

fPWM

)
. (15)

This is correct as stated—but it’s not very helpful if x 6= 1. Equation (13) is
the most general result.
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Continuing the example above, where we already have realized that we need
to keep w in the range w ∈ [0, 1000], we can now calculate the effective resolu-
tion:

Resolution = log2

(
fOSC

x fPWM

)
bits (16)

= log2

(
4 MHz

4 (1 kHz)

)
bits

= 9.97.

So although we no longer achieve the full 10 bits accuracy we sought originally,
we do get a value that is close to it. Whether it is sufficient depends on the
application.

5


