
Random Number Generators∗

Charles B. Cameron

April 12, 2005

1 Introduction

Why would there ever be any need to generate random numbers? There are
numerous applications. Here are a few of them:

• To generate random keys for use in encryption.

• To generate lottery numbers.

• For performing experiments in extra-sensory perception (ESP).

• For performing Monte Carlo simulations, in which parameters of a system
may be subject to random variability. By doing enough simulations, you
can get an idea of the effect of these variations on the overall system.

• For testing error-correction schemes. Using random numbers makes it
possible to introduce arbitrarily selected bit-error rates.

• For testing communications demodulation schemes, for the very same rea-
son.

• For use in games that need a random component. For example, games with
an unpredictable starting state or with unpredictable playing parameters,
such as difficulty.

Broadly speaking, there are two classes of hardware to generate random
numbers:

• truly random number generators and

• pseudorandom number generators.

Most of the truly random number generators rely on the randomness associated
with noise in resistors, semiconductors, or radioactive sources. Pseudorandom
number generators, on the other hand, attempt to simulate randomness through
mathematical techniques.

∗Course notes for EE461 Microprocessor-based Digital Design

1



2 Truly Random Number Generators

2.1 Johnson Noise

The Johnson noise voltage generated by thermal activity in a resistor has an
extremely broad, flat spectrum. Such noise includes all wavelengths within this
spectral range and they all have equal power or intensity. It is the presence
of more-or-less equal amounts of energy at all visible wavelengths that makes
white light look white to us, so Johnson noise is often referred to as white noise,
generated by thermal activity. The probability distribution of the voltages is
Gaussian, meaning the voltages are normally distributed. A Gaussian probabil-
ity distribution function has the form

f(µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2

where

µ = the mean value of f(x) and
σ = the standard deviation of f(x).

The mean value µ of f(x) is its average value and the standard deviation σ is a
measure of the extent to which f(x) deviates from the mean. The probability
that f(x) is within the range µ ± σ is over 68%; the probability that f(x) is
within the range µ±2σ is over 95%; and the probability that f(x) is within the
range µ± 3σ is over 99%.

Johnson1 noise voltage has a mean value µ = 0 V and a root-mean-square
voltage given by

vRMS,Johnson =
√

4kTRB

where

k = Boltsmann’s constant = 1.38× 10−23 J/K,

T = absolute temperature,
R = the resistance of the resistor, and
B = the bandwidth of a (hypothetical) perfect, noiseless, bandpass

filter whose input is driven by the resistor.

This voltage vRMS,Johnson corresponds to the standard deviation σ of a voltage
probability distribution. Because the voltage is random, we can obtain a random
number with an underlying Gaussian probability distribution from this voltage
by, say, passing it through an analog-to-digital converter. Typically it would be

1Johnson discovered in 1928 that all conductors have a non-periodic voltage associated
with them, a voltage generated by thermal effects. Nyquist found the mathematical formula
for Johnson noise, reasoning from thermodynamic principles.[1]

2



necessary to amplify and possibly shift the random voltages in order to match
the input range of the A/D converter. In the case of an A/D converter with
strictly positive input voltages, say 0 V to 5 V, the digital output of the A/D
converter would be non-zero but it might not be at the mid-point of the output
range. The average would depend on the average voltage at the input to the
A/D converter.

In practice, control over the standard deviation σ depends either on control-
ling the resistance R or the temperature T .

2.2 Shot Noise

Another means of generating truly random numbers relies on noise generated in
semiconductors, such as diodes. This noise is referred to as shot noise, possibly
because it sounds a bit like shotgun pellets falling onto a surface. Like Johnson
noise, the amplitude of shot noise has a Gaussian distribution with zero mean.
However, this is current noise, not voltage noise. A steady current passing
through the diode is subject to random fluctuations about its average value.
The root-mean-square amplitude of these fluctuations is

iRMS,shot =
√

2qIDCB

where

q = an elementary charge = 1.602× 10−19 C,

IDC = the (nominal) direct current through the diode, and
B = the bandwidth of a (hypothetical) perfect, noiseless, bandpass

filter whose input is driven by the diode.

Whereas Johnson noise vRMS,Johnson relates to random voltage fluctuations, the
shot noise iRMS,shot corresponds to the standard deviation σ of a current prob-
ability distribution. Because the current fluctuation is random, we can obtain
a random number with an underlying Gaussian probability distribution from
this current by, say, sending it through a resistor and passing the resultant volt-
age through an analog-to-digital converter. Because Johnson noise represents
a zero-mean fluctuation around a non-zero DC current, the average DC cur-
rent will generate an average DC voltage, giving the A/D converter’s input and
output a non-zero average.

In practice, control over the standard deviation σ depends on controlling the
direct current IDC. This tends to be much easier to control than changing either
temperature T or resistance R in the case of Johnson noise and so is preferable
in that respect.

2.3 Generating a Uniformly Distributed Random Number

The schemes discussed above convert physical electrical noise into digital num-
bers with a Gaussian distribution around a mean. One way of varying the

3



scheme is to use an analog comparator to generate either a 1-bit or a 0-bit,
depending on whether or not the random voltage crosses its switching threshold
or not. If the threshold is set to correspond to the average value of the input
voltage, then a 1-bit and a 0-bit will be generated with equal probability. By
collecting a sequence of n of these values, a truly random number of n bits can
be created.

There is a catch, however: voltages do not change appreciably in zero time.
Therefore, successive voltages are correlated with each other. However, wait-
ing long enough between samples is sufficient to let the correlations die away,
effectively making the samples independent of one another. How long is long
enough? Sampling intervals ∆t should be much greater than the reciprocal of
the bandwidth, that is, we require

∆t À 1
B

.

For example, if we use a bandpass filter with bandwidth B = 1 MHz, we
should choose

∆t À 1
1 MHz

= 1 µs.

A sampling interval of, say, 10 µs to 100 µs would suffice in this case. Reducing
the bandwidth to B = 1 kHz, on the other hand, would require lengthening our
sampling intervale to 10 ms to 100 ms.

What happens if the random noise source does not have an average value
that is halfway between the lower voltage reference V −

REF and the upper voltage
reference V +

REF of the A/D converter? The result will be a biased random
number generator. One way to eliminate the bias would be to take successive
input bits two at a time, as described in RFC1750[2]. Discard pairs of identical
bits, taking only pairs that consist in bits 01 or 10. If the bit pair is 01, output
a 0; if it is 10, output a 1. Provided the random bits are truly uncorrelated,
this will completely eliminate any bias. Since some bit pairs will likely be
discarded, it will take an indeterminate time to collect n random bits. As
RFC1750 shows, the expected time to collect n bits depends on the degree to
which the probability of input bits being 0 or 1 differs from 0.5. If a zero-
bit occurs with probability p0 = 0.5 + e and a one-bit occurs with probability
p1 = 0.5 − e, then on average you will need approximately N = n/

(
0.25− e2

)
input bits (n/2 input bit pairs) before you will have collected n random output
bits.

The table below shows a few combinations of these values:

4



n e p1 p2 N

100 0.001 0.501 0.499 400.0
0.01 0.510 0.490 400.2
0.1 0.600 0.400 416.7
0.2 0.700 0.300 476.2

1 000 0.001 0.501 0.499 4000.0
0.01 0.510 0.490 4 001.6
0.1 0.600 0.400 4 166.7
0.2 0.700 0.300 4 761.9

10 000 0.001 0.501 0.499 40 000.2
0.01 0.510 0.490 40 016.0
0.1 0.600 0.400 41 666.7
0.2 0.700 0.300 47 619.0

A casual inspection of the values for N—or, for that matter, the formula for
N—shows that we need to collect roughly 4n bits, on average, to obtain n bits
with no bias, provided the source of input bits is not too badly biased.

3 Pseudorandom Number Generators

There are several pseudorandom number generators in widespread use. Most of
these try to generate bit sequences having equal probability for 1 and 0 bits.

3.1 Linear Congruential Generators

An m-bit pseudorandom number Vj is calculated from a previous pseudorandom
number Vj−1 by the recurrence relation

Vj = AVj−1 + B mod m

where A and B are constants particular to a specific generator. The sequence
of random numbers repeats with a period of at most m, but often it is less than
this, depending on the choices for A and B.

There are other defects to the scheme. For example, successive numbers are
correlated, making it possible to infer a new one from a previous one. Also,
low-order bits in the numbers tend to repeat with a period much shorter than
the overall period.

3.2 Primitive Polynomials modulo m

Another commonly used scheme depends on the properties of polynomial divi-
sion. A polynomial with binary coefficients is of the form

p(x) =
m∑

i=0

gix
i

5



b0b1b2b3bm-3bm-2bm-1
...

+

gm-1gm-2gm-3gm-4g2g11

+++++ ...

Figure 1: A generalized Fibonacci implementation of the linear feedback shift
register.

where the coefficients gi can take on either the value 0 or the value 1.
We can implement a pseudorandom number generator based on such a poly-

nomial as a linear feedback shift register with m bits bm−1, bm−2, . . . , b2, b1, b0.
There are two widely used implementations.[3]

Fibonacci Implementation

bj ←
{

(b0 · gm−1)⊕ (b1 · gm−2)⊕ · · · ⊕ (bm−2 · g1)⊕ bm−1 if j = 0
bj−1 if j 6= 0.

Galois Implementation

bj ←




bm−1 if j = 0
bj−1 ⊕ bm−1 if j 6= 0 and gj = 1
bj−1 if j 6= 0 and gj = 0

A generalized schematic of the Fibonacci implementation can be seen in
Figure 1. When the polynomial weights gi are 0, they can be implemented
as open circuits. When they are 1, the can be implemented as wires. The
⊕ symbols represent an exclusive-OR function, equivalent to ordinary binary
addition without a carry. Note that weight gm−1 is closest to the shift register’s
input.

For example, the particular polynomial p(x) = x5 + x4 + x2 + 1 can be
implemented as shown in Figure 2. (Note: this is not a good polynomial to
use since it will not generate all 25 − 1 = 31 non-zero values. It is used only
for the purpose of illustration.) The highest exponent indicates the number of
bits in the shift register. The lowest-order term always is 1. As for the other
exponents, a term in xi is present if its corresponding weight gi = 1 and it is
missing if gi = 0.

An alternative to the Fibonacci implementation is the Galois implementa-
tion. A generalized version of it is shown in Figure 3. The gains gi are exactly
the same as those of the Fibonacci implementation. Note, however, that the
weights in the Galois implementation appear in the reverse order from that of

6



b2b3b4 b0b1

+ +

Figure 2: A Fibonacci implementation for the polynomial p(x) = x5+x4+x2+1

...

g1g2g3g4gm-2gm-1

++ b0b1b2++ b3bm-3 +bm-2 ++bm-1

gm-3

Figure 3: A generalized Galois implementation of the linear feedback shift reg-
ister.

the Fibonacci implementation. Weight gm−1 now is closest to the output of the
shift register, not the input, as with the Fibonacci implementation. Although
both implementations produce the same sequence of pseudorandom codes, it
takes different starting values to get them to do so.

The same polynomial, p(x) = x5 + x4 + x2 + 1, whose Fibonacci implemen-
tation was shown in Figure 2 has the Galois implementation of Figure 4.

The starting value for both the Fibonacci implementation and the Galois
implementation is very important. In particular, it must not be all zeros, for if
it is, then the contents of the register will be zero always. The initial value is
called the seed value.

Although the sequences may appear to be random and may pass a number
of tests showing an equal likelihood of any particular non-zero value ever being
generated, the sequences are in fact completely deterministic.

This pseudorandom number generation scheme has two main flaws:

• If the polynomial is not chosen with care, the system may operate in a
sub-cycle, meaning that only a subset of all possible register values will
occur. Mathematical analysis makes it possible to pick polynomials that
do not suffer this defect, polynomials that generate all 2m − 1 non-zero
values.

• It is not a good idea to use them for encryption because although they

+ b0b1b2+ b3b4

Figure 4: A Galois implementation for the polynomial p(x) = x5 + x4 + x2 + 1

7



Number Number Tap
of Bits of Taps Points

32 4 32, 31, 30, 10
6 32, 31, 30, 29, 26, 16
16 32, 31, 29, 26, 24, 23, 21, 18, 16, 15, 13, 10, 8, 7, 5, 1

30 4 30, 28, 27, 6
6 30, 29, 28, 26, 24, 9
16 30, 29, 26, 25, 23, 20, 19, 16, 14, 13, 10, 9, 8, 7, 4, 3

16 4 16, 14, 9, 4
6 16, 15, 14, 11, 10, 6
14 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 3, 2

Table 1: Some useful m-sequences of various lengths.[3] The tap points indicate
the terms in the polynomial that have non-zero coefficients. For example, tap
points 32, 31, 30, and 10 correspond to the order-32 polynomial p(x) = x31 +
x30 + x10 + 1.

can be made to provide sequences that appear to be random, the ciphers
based directly on them can be broken fairly easily.[4]

A linear feedback shift register cannot contain all zeros without ceasing to
function. This exception aside, however, when the generating polynomial is
a so-called m-sequence, all non-zero numbers occur with equal probability .
These m-sequence polynomials have numerous useful properties and are widely
tabulated. Table 1 lists a few of them for various useful lengths. The tap
points indicate the terms in the polynomial that have non-zero coefficients. For
example, tap points 32, 31, 30, and 10 correspond to the order-32 polynomial
p(x) = x31 + x30 + x10 + 1.

4 Generating Bit Errors at a Specified Rate

Once we have a random number, whether generated by a truly random number
generator or by a pseudorandom number generator, it is easy to construct a
circuit to create any desired rate of bit errors, provided you can generate the
random numbers rapidly enough. Suppose we are using m-bit random numbers,
for example. To get a bit error rate ρ ∈ [0, 1], compute the value

q = ρ (2m − 1) .

Whenever the random number x ≤ q, complement the transmitted bit. This
will happen just often enough to keep the expected bit error rate equal to ρ.

References

[1] H. W. Ott, Noise Reduction Techniques in Electronic Systems. New York:
John Wiley & Sons, 1976.

8



[2] D. Eastlake, 3rd, S. Crocker, and J. Schiller, “RFC 1750: Randomness rec-
ommendations for security,” url = “http://rfc.net/rfc1750.html”, Dec. 1994,
accessed 8 April, 2005.

[3] New Wave Instruments, “Linear feedback shift registers,” url =
“http://www.newwaveinstruments.com/resources/articles/m sequence
linear feedback shift register lfsr.htm”, accessed 8 April, 2005.

[4] E. Zenner, “Cryptanalysis of LFSR-based pseudorandom generators,” Tech-
nical Report TR-04-004, Department for Mathematics and Computer Sci-
ence, University of Mannheim, Tech. Rep., 2004, available online at http:
//134.155.36.45/madoc/frontdoor.php?source opus=727.

[5] G. R. Cooper and C. D. McGillem, Probabilistic Methods of Signal and
System Analysis, 2nd ed. New York: CBS College Publishing, 1986.

[6] P. Horowitz and W. Hill, The Art of Electronics, 2nd ed. New York: Cam-
bridge University Press, 1989.

9

http://rfc.net/rfc1750.html�
http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm�
http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm�
http://134.155.36.45/madoc/frontdoor.php?source_opus=727�
http://134.155.36.45/madoc/frontdoor.php?source_opus=727�

