
Hamming Codes∗

Charles B. Cameron

April 19, 2005

1 The Hamming Distance

Let n be the number of bits used to encode a message. Let k be the number of
message bits included in the encoding. Therefore n − k is the number of bits
used for error checking.

The Hamming Distance between two codes is the number of bits which differ
between the two codes. For example, consider the following two 5-bit codes,
where the leftmost bit is bit 5− 1 = 4 and the rightmost bit is bit 0: 00110 and
01010 differ in positions 4 and 3. Therefore the Hamming Distance between
these two codes is 2.

In any coding scheme you choose, let dmin be the minimum Hamming Dis-
tance.

2 Detecting Errors

If dmin = 1, at least two valid codes differ in only one bit. If this bit is inadver-
tently changed in a memory or during a data transmission then it is impossible
to detect the error. On the other hand, if dmin = 2, an error in one single bit
guarantees that the resultant code is not valid. Why not? Because with a one-
bit error it has moved a Hamming Distance 1 from the (original) correct code:
no other valid code exists this close to the original code. So with dmin = 2 we
can detect any single-bit error.

In general, if we want to detect l-bit errors, we need to be sure that dmin ≥
l + 1.

3 Correcting Errors

Consider now the problem of correcting errors. Suppose as before dmin = 2. If a
single-bit error occurs, the resultant code will have been transformed into a new,
invalid code. It is impossible to know for this invalid code which of two possible

∗Course notes for EE461 Microprocessor-based Digital Design

1

3 2 1 0

10 9 8 7 6 5 4 3 2 1 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1Locations
Check-bits
Message-bits

c c c c

m m m m m m m m m m m

Figure 1: Layout of Message and Check Bits in a Hamming Code

adjacent valid codes1 was intended. Each is equidistant from the erroneous code
and there is no reason to suppose one of these more likely than the other to have
been intended. We cannot correct a 1-bit error with this coding scheme. If two
errors occur, we cannot even detect the errors because the resultant code will
be a valid, albeit unintended, code.

Suppose now that dmin >= 3. A single-bit error will produce an invalid
code with a Hamming Distance of 1 from the original code and a Hamming
distance of at least 2 from any other valid code. If it is reasonable to suppose
that only one error occurred, then it is reasonable to correct the invalid code to
the nearest valid code.

If more than one error occurred, then we are in trouble. The result of two
errors is an erroneous code which is closer to an incorrect valid code than to the
correct one. If three errors occur, the erroneous code will be an incorrect valid
code. This error cannot even be detected.

In general, if you want to be able to correct t-bit errors, you need to be sure
that dmin >= 2t + 1.

4 The Hamming Code

Hamming proposed an error-correcting code which could correct a 1-bit error
and detect 2-bit errors. In his scheme multiple parity-check bits are included
with the message bits. Any particular bit, whether part of the message or just
a parity bit, would have a unique combination of check-bits associated with it.

Suppose we decide to have four check-bits, c3, c2, c1, and c0. We therefore
have n − k = 4 because there are four check-bits. A Hamming Code sets
n <= 2n−k − 1. In this case, then, n <= 24 − 1 = 15. Thus k = n− (n− k) =
n − 4 <= 15 − 4 = 11. In other words, there are four check-bits and up to 11
message-bits in a combined total of 15 stored or transmitted bits.

In a Hamming Code, the message- and the check-bits are located at partic-
ular locations in the code. A check-bit ci is located at position 2i and positions
are numbered starting at 1. So c0 is at location 1, c1 is at location 2, c2 is at
location 4, and c3 is at location 8. This pattern is followed in any Hamming
Code, no matter how many check-bits are included. The other locations are

1Adjacent means “being separated by a Hamming Distance of 1”.

2

Decimal Binary
Number Number

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Figure 2: Four-bit Numbers

used by message bits. Figure 1 on page 2 shows one obvious way in which the
message bits could be distributed in the other bit locations. Notice that there
is no column 0. We will see how we can incorporate an extra bit in column 0
shortly to make the code detect—but not correct—two-bit errors. For now, the
code we are designing will only be capable of detecting and correcting one-bit
errors.

In a Hamming Code, parity bit ci is used to hold the parity bit for all bits
in the code whose locations have a binary representation with a 1 in position
i. Consider the table of four-bit binary numbers and their decimal equivalents
shown in Figure 2. Since decimal numbers 1, 3, 5, 7, 9, 11, 13, and 15 all
have a 1 in position 0 in their binary representations, c0 is used to store parity
information for each of the bits in these locations. In other words, c0 is used
to store parity information on itself and on message bits m0, m1, m3, m4, m6,
m8, and m10. The calculation of an even-parity can be done by applying the

3

3 2 1 0

7 6 5 4 3 2 1 0

Bit 12 11 10 9 8 7 6 5 4 3 2 1Locations
Check-bits
Message-bits
Received message bits

Received check-bits
Calculated check-bits

Corrected MessageCorrected message bits (Hex and ASCII)

c c c c

m m m m m m m m

r

c

r c

=
=
⊕

Figure 3: A Worksheet for Correcting Erroneous Messages

exclusive-or operation to each of the bits. So

c0 = m10 ⊕m8 ⊕m6 ⊕m4 ⊕m3 ⊕m1 ⊕m0 (1)

Similarly, since decimal numbers 2, 3, 6, 7, 10, 11, 14, and 15 all have a 1 in
position 1 in their binary representations, c1 is used to store parity information
for each of the bits in these locations. In other words, c1 is used to store parity
information for itself and for message bits m0, m2, m3, m5, m6, m9, and m10.
So

c1 = m10 ⊕m9 ⊕m6 ⊕m5 ⊕m3 ⊕m2 ⊕m0. (2)

Similarly, since decimal numbers 4, 5, 6, 7, 12, 13, 14, and 15 all have a 1 in
position 2 in their binary representations, c2 is used to store parity information
for each of the bits in these locations. In other words, c2 is used to store parity
information for itself and for message bits m1, m2, m3, m7, m8, m9, and m10.
So

c2 = m10 ⊕m9 ⊕m8 ⊕m7 ⊕m3 ⊕m2 ⊕m1. (3)

We can repeat this reasoning for parity check-bit c3 and satisfy ourselves
that

c3 = m10 ⊕m9 ⊕m8 ⊕m7 ⊕m6 ⊕m5 ⊕m4. (4)

What would we do if we didn’t need all 11 message bits? For example, the
7-bit ASCII codes should only need message bits m0 through m6. Message bits
m7 through m10 are unnecessary. We can simply drop them from the equations
for the check bits ci, making the equations simpler. For example, with 7-bit
ASCII codes we would have c0 = m6⊕m4⊕m3⊕m1⊕m0, the same as (1) but
with the terms m10 and m8 omitted.

4

3 2 1 0

7 6 5 4 3 2 1 0

Bit 12 11 10 9 8 7 6 5 4 3 2 1Locations
Check-bits
Message-bits
Received message bits 1 1 1 0 0 1 0 1

Received check-bits 0 1 0 0
Calculated check-bits 1 0 0 0

1 1 0 0 CorrectedCorrected message bits 0 1 1 0 0 1 0 1

c c c c
m m m m m m m m

r
c
r c

=
=
⊕ Message 65 ' ' (Hex and ASCII) E=

Figure 4: Example Showing How to Correct the Received Code 0xE2C

5 Correcting the Errors

Figure 3 contains a worksheet useful for correcting errors manually. The easiest
way to explain how to use the worksheet is through an example. Suppose our
code is used to transmit 8-bit bytes with four correction bits. In other words,
each 8-bit message code is represented by a 12-bit error-correcting code.

As a specific example, assume we have retrieved the code 0xE2C. We enter
the 12-bit equivalent 1110 0010 1100 into the table in the two rows labeled
Received message bits and r = 0100 Received check bits as shown in Figure 4.

Next we recompute the check bits using equations (1), (2), (3), and (4)
shown in Section 4. These bits are written in the row of Figure 4 labeled c =
Calculated check bits. The four bits are c = c3c2c1c0 = 1000.

Next, we compute the exclusive-or of r and c: r ⊕ c = 01002 ⊕ 10002 =
11002 = C16 = 1210. The result is calculated bit by bit: bit i of 0100 is
combined with bit i of 1000. The result of this operation is the location within
the 12-bit code which is in error. In this case, it is location 12 (remember, for
this version of the Hamming code, indices run from 1 to n, not from 0 to n−1.)
This means that bit 12 was received as a 1; it is in error; so it needs to be
replaced by a 0.

Finally, we extract the message bits, discarding the check bits, to get the
message 0110 01012 = 6516. If this message is actually an eight-bit ASCII code,
it represents the character E.

In practice we would use either hardware or software to calculate the check
bits and to alter the indicated bit.

6 Detecting Two-bit Errors

In the scheme described so far, two-bit errors cannot be reliably detected. We
can extend the scheme by using column 0 for an overall parity bit. For the

5

15-bit code we have considered up to now, we add a sixteenth bit in column 0
and compute it by incorporating all the message bits as well as all the check
bits computed so far.

p0 = m11 ⊕m11 ⊕m10 ⊕m9 ⊕m8 ⊕m7

⊕m6 ⊕m5 ⊕m4 ⊕m3 ⊕m2 ⊕m1

⊕m0 ⊕ c3 ⊕ c2 ⊕ c1 ⊕ c0⊕

If a single-bit error occurs, the received and the calculated overall parity bits
will not match. In this case we can use the remaining Hamming check bits as
described earlier to discover which bit is in error and fix it.

When a double-bit error occurs, the received and the calculated overall parity
bits will match. Only by using the remaining Hamming check bits as described
earlier will we discover whether no errors or a double-bit error occurred. In
the case of no errors, the indicated erroneous bit will be in column 0. But the
Hamming check bits do not use column 0. In this case, we know there are no
errors. On the other hand, if a two-bit error occurred, the Hamming check bits
will indicate some other column than column 0. This, combined with the fact
that the overall parity bit p0 is correct, indicates that two bits are in error.

This modification to the basic coding scheme is sometimes referred to as
Single-Error Correction, Double-Error Detection or SECDED.

References

[1] S. Lin and J. D. J. Costello, Error Control Coding: Fundamentals and Ap-
plications. Englewood Cliffs, NJ: Prentice Hall, 1983.

[2] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. New York, NY: North-Holland, 1977.

[3] W. W. Peterson and J. E. J. Weldon, Error-Correcting Codes, 2nd ed.
Cambridge, MA.: MIT Press, 1972.

6

