
EE461
Memory Buses

Charles B. Cameron

April 2, 2004

Addresses

Data

Data Transfer Control

Arbitration Control

Master Slave

Figure 1: Memory Buses

1 Components of a Memory-
Bus

The purpose of a memory bus is to convey data
from a master device (a processor) to a slave de-
vice (a memory) and vice versa. There are sev-
eral aspects to a bus. Figure 1 shows the principal
components of a memory bus.

Addresses are provided by the master to the
slave. Since addresses have n bits, there will be
2n possible addresses in the system. It is quite
common, though, to have a system in which not
all locations are implemented. For example, we
might have a system with 10-bit addresses, capa-
ble of handling 210 = 1024 distinct addresses, yet
containing only a single 8-bit address memory de-
vice with 256 locations within it. The remaining
768 locations would be unimplemented.

Once the master has provided a valid address
(one corresponding to an implemented memory lo-
cation), a data transfer will ensue. Whether this

is a write (a transfer from the master to the slave)
or a read (a transfer in the opposite direction), the
data will flow across the data lines of the memory
bus. The decision about whether to perform a read
or a write is made by the master and signaled via
the control bus. The control bus typically includes
additional controls such as a chip select to desig-
nate a single slave device. Doing this permits mul-
tiple slaves to be connected to the same data lines
without the risk of more than one of them trying
to place data on the data lines.

It is also possible to have multiple masters
share the same address, data, and control lines
in a memory bus. This requires additional con-
trol lines, shown in Figure 1 as Arbitration Con-
trol lines. The arbitration control selects a sin-
gle master to place data on the address lines and
the control lines. The master does not take over
the arbitration lines: these are always handled by
the same arbitration control unit. However, this
might be a task permanently assigned to one of
the master devices rather than to a distinct de-
vice.

There are two ways for multiple masters to sig-
nify a desire to get control of the memory bus. One
of these relies on an open-collector line, the other
relies on a tristate line. It is permissible for mul-
tiple masters simultaneously to request control of
the bus if the request line is an open-collector line.
If this happens on a tristate request line, a short
circuit may result since one contending master
might be trying to put a logical 1 on the line and
another might be trying to put a 0 on the same

1

Arbitrator Master 1 Master 2 Master 3
Grant Grant Grant Grant

Bus Request

Figure 2: Arbitration via a Daisy Chain

line. There are two commonly used approaches to
making the trisate request line work:

• The arbitration controller selects one master
at a time and polls it to see if it wants control
of the memory bus.

• There are separate request lines for each of
the competing masters. The arbitration con-
troller might use a priority encoder for choos-
ing the winning contender.

When an open-collector request line is used,
there need only be one such line. However, the
arbitration controller still needs a way of discover-
ing which master requested control of the memory
bus.

Some sytems use a daisy-chain arrangement, as
shown in Figure 2. In this scheme, a master re-
quests access to the memory bus by asserting the
Bus Request signal, which is typically an open-
collector line. The arbitrator cannot know which
master requested the access but issues a Grant
signal to the first master in the daisy chain. This
device therefore has the first crack at accessing
the bus. If that master did not request access to
the bus, it simply passes the grant on to the next
device in the daisy chain. On the other hand, if it
did request access, it refrains from passing on the
grant until it has finished using the bus.

The last master in the daisy chain behaves in
the same manner. However, its output grant is
returned to the arbitrator. On seeing the grant
come back, the arbitrator knows that all devices
have had a chance to use the bus and are now fin-
ished with it. Once a master has passed the grant
on to the next master in the daisy chain, it must
also refrain from using the memory bus itself and

Arbitrator Master 1 Master 2 Master 3
Grant Grant Grant

Bus Request

Bus Busy

Figure 3: Daisy-Chain Arbitration of a Single
Master

will have to wait for another arbitration cycle. For
now, it has missed its chance.

As shown in Figure 2, the daisy-chain gives ac-
cess to the bus to every master which needs it, al-
beit in a particular order of priority. In the version
of the scheme shown in Figure 3, the arbitrator
intervenes after every bus access. Once a master
has received the grant signal, it asserts the Bus
Busy signal and withdraws (de-asserts) the Bus
Request. At this point the arbitrator withdraws
the Grant signal. This does not mean that the
master must relinquish control of the bus, how-
ever. Once the master has finished with the bus
it does not relay the grant signal to the next mas-
ter in the daisy chain, as is the case in the scheme
shown in Figure 2. Instead, it signals the arbi-
trator that it is finished by withdrawing the Bus
Busy signal.

In the meantime, other masters may or may not
have asserted the Bus Request line. If none have
then the the arbitrator need do nothing until the
next time the Bus Request line is asserted by some
master. If another device has already requested
the bus while the first master has been using it,
then the arbitrator can issue a new grant right
away.

An advantage to the scheme in Figure 3 over
that in Figure 2 is that high-priority devices will
never have to wait for more than one lower-
priority master to finish with the bus before they
get service again. A disadvantage is that low-
priority masters can be completely blocked from
ever getting access to the memory bus if higher
priority masters are always using it. The de-
signer must carefully assess these factors in de-

2

ciding which scheme to use.
Under the daisy-chain arrangement, the

amount of time a master waits to get access to the
bus depends on several significant factors:

• Where is it in the chain? The masters clos-
est to the arbitrator have the highest priority.
For the scheme in Figure 2 this means they
will be serviced first within a cycle. For the
scheme in Figure 3 it may allow them to to-
tally monopolize the bus. When only one mas-
ter requests access to the bus, the position of
the master is of less significance. Only the
time for the grant signal to propagate through
the daisy chain then affects the access delay.

• How many masters are in the chain? Gen-
erally speaking, the more masters there are
competing for a bus, the lower will be the ac-
cess speed, at least for low-priority masters.

• How often does a given master require access
to the bus? If the bus is in particularly high
demand, with every master needing frequent
access, masters may have to wait frequently
for their turn to use the data bus.

• For how long does a master use the bus?
Some masters, such as Direct Memory Access
(DMA) controllers may need it for lengthy
bursts of data. All other uses are completely
blocked while this is going on.

2 Bus Handshake Protocols
We shall consider four kinds of bus handshake
protocols:

1. Synchronous

2. Asynchronous

3. Semisynchronous

4. Split cycle

Master

Slave

Clock

Address

Data

Decode

Buffer

Figure 4: Synchronous Handshaking

2.1 Synchronous Bus Handshakes
In many ways Synchronous Bus Handshakes are
the easiest to implement. All transfers are per-
formed according to a clock transmitted by the
master and the clock is the only control signal
needed. A single data transfer occurs on every
clock cycle. A slave is required to keep up with the
master, a requirement which constrains either the
clock rate or the choice of slaves in a system. This
is usually the fastest kind of transfer.

Figure 4 shows the general arrangement. For
a write operation, the master places an address
and data on the bus. A data transfer takes place
when the clock cycle begins. The address may be
partially decoded by circuitry outside the memory
device, circuitry which activates the designated
slave by issuing a chip-select signal to it. Addi-
tional decoding of the address is usually neces-
sary within the slave device because more than
one of the addressable locations supported by the
address length is likely stored within the device.

There are several sources of delay in the trans-
fer, as indicated in Figure 5.

• Progagation delay from the master to the
slave and from the slave to the master. The
propagation delay often varies from one ad-
dress or data line to the next, with the result
that the signal becomes skewed, as shown in

3

Clock

Address

Data

Skew, Decode, & Setup Time

Hold and Skew Time

Write WriteRead

Figure 5: Timing for Synchronous Bus Handshak-
ing

3A

2A

1A

0A

Figure 6: Signal Skew on the Address Bus

Figure 6. Skew may also be introduced by
variations in the propagation time through
different gates. In fact, typically these are
more significant sources of skew. Differences
in input capacitance will also induce skew
since they will require different amounts of
time to cause an input to reach the same volt-
age.

• Decode time. Although the address decoding
circuits are asynchronous (combinational) cir-
cuits and so are very fast, they nonetheless
take some time to process the address.

• Setup time. A signal may need to be present
for some non-zero amount of time before being
used.

• Hold time. A signal may need to be present
for some non-zero amount of time after being
used.

The figure shows two examples of a write opera-
tion and one of a read.

For both write and read operations, the master
must ensure the fully decoded address is avail-
able at the address inputs to the slave when the
clock cycle begins. It does this by taking into ac-
count the maximum amounts of propagation de-
lay, skew, decode delay, and setup time required
and sending the address at least that far in ad-
vance of the beginning of the clock cycle. The mas-
ter must also observe the hold time required by
the slave. The same requirements apply to data
during a write cycle.

The figure suggests that the slave needs half a
clock cycle to accept the data from the master but
this is not the most common situation. Usually,
the leading edge of the clock cycle is used to trig-
ger the transfer. After the slave places data on
the bus, that data will not reach the master until
another skew delay has elapsed. The master may
impose a setup and a hold time on the slave, too.
In the figure, the transfer from slave to master is
depicted as occurring halfway through the clock
cycle and so the master’s setup time is not shown,
although the skew and hold times are.

4

Master

Slave

Time

Figure 7: Master-Slave Protocol

If the hold and setup times differ between mas-
ter and slave or between address and data, the
longest requirements must be honored.

The most serious drawback to synchronous bus
handshaking is that the clock rate cannot exceed
that which can be accommodated by the slowest
slave on the bus. If the slowest device is seldom
needed, the slow pace it imposes on all other de-
vices can be intolerable.

2.2 Asynchronous Bus Handshakes
There is no clock when Asynchronous Bus Hand-
shaking is used. A pair of control lines is ded-
icated to coordinating the transfer, as shown in
Figure 7. As a result, the principal drawback
to the synchronous handshaking scheme is over-
come: fast devices respond quickly, even though
slow devices may take longer.

The master device operates the Master line and
the slave device operates the Slave line. A typi-
cal handshaking sequence using these two control
lines is :

1. Master device asserts the Master signal, ef-
fectively telling the slave to accept or provide
data.

2. Slave device responds by asserting the Slave
signal, telling the master “OK”.

3. Master responds by withdrawing (de-
asserting) the Master signal, telling the
slave to finish the data transfer.

4. Slave withdraws the Slave signal, telling the
master it has finished.

This is a completely interlocked asynchronous
bus handshaking sequence. It is very widely used
because it is so reliable and efficient. However,
synchronous handshaking will produce faster
transmission in a system where the slaves do not
have widely divergent access times.

2.3 Semisynchronous Bus Hand-
shakes

The semisynchronous bus uses the clock signal
of the synchronous handshake but adds an ad-
ditional signal, Wait. If a slave cannot complete
its data transfer within a single clock cycle it as-
serts the Wait signal, telling the master to in-
sert extra clock cycles before completing the op-
eration. Thus the semisynchronous bus has at-
tractive features of both the synchronous and the
asynchronous bus: slow slaves can be serviced, as
they can on the asynchronous bus, without inter-
fering with the rapid operation of fast slaves, as
they do on the synchronous bus.

There is a limit on the physical length of the
semisynchronous bus, imposed because the Wait
signal must reach the master before the clock cy-
cle ends. This length is the distance traversed in
one half the round-trip signal time. Asynchronous
buses do not suffer from this restriction: the mas-
ter will wait as long as necessary for the slave to
respond.

2.4 Split-Cycle Bus Handshakes
Another scheme for supporting a mixture of fast
and slow devices is the split-cycle bus. It uses an
asynchronous bus, with a twist, as depicted in Fig-
ure 8. In the first phase of communication, the
master sends a command to the slave. However, it
does not wait for a reply, instead terminating the
exchange. Some time later, when the slave has
completed its task, it sends data back to the mas-
ter by taking on the role of the master and treat-
ing the master as a slave. The hardware required
to do this is more complex, though, because both
the master and the slave must be capable of con-

5

Master

Slave

Address

Data

Master transmits
to slave

Bus idle: other
masters can use it

Slave transmits to
master

Figure 8: Split-Cycle Bus Timing

trolling the bus and a bus arbitrator is absolutely
required.

The read command is a little different in split-
cycle operation. The master must pass the slave
its address when it contacts the slave. The slave
uses this address later to call the master up again.
So the two halves of a split read cycle really both
are writes: one by the master, one by the slave.

References
[1] Stone, Harold S., Microcomputing Inter-

facing, Reading, Massachusetts, Addison-
Wesley Publishing Company, 1982.

6

