
1

EE461 Microprocessor-based Digital Design

Timing Delay Loops

Assignment 12 Solutions

Listing 1: Program fragment

delay

movwf delay count
delay decrement

decfsz delay count ,F
goto de lay cont inue
goto delay end

delay cont inue

nop ; m 1 nop i ns t r uc t io ns g o her e
. . .

goto delay decrement
delay end

nop ; m 2 n o p i n s t r u c t i o n s g o h e r e
. . .

return
1. Consider the program fragment in Listing 1. In class we found suitable

values for m1 and m2 under two assumptions:

(a) the processor was operating at a frequency of fXTAL = 4 MHz and

(b) the subroutine was called with a value n in the W register and the
interpretation of this was that we wanted a delay to last n × 10 µs.

Analyze the same program fragment under the following different assump-
tions:

(a) the processor now operates at a frequency of fXTAL = 10 MHz and

(b) the subroutine is to be called with a value n in the W register and
the interpretation of this is that we want a delay to last n × 100 µs.

Find suitable values for m1 and m2 and comment upon the practicality of
using these values, as well as on alternative approaches to obtaining the
requisite delay.

SOLUTION

1
2
3

4
5
6
7

8
9

10
11

12
13
14

2

Whenever n > 2, the decfsz instruction in line 4 will not result in 0.
It will then take only a single instruction cycle to execute and the next
instruction to execute will be the goto instruction in line 5.

This, in turn, results in the m1 nop instructions shown as starting in line
8 being executed, along with the goto instruction in line 10.

This series of instructions takes 1 +2+ m1 +2 = 5+ m1 instruction cycles

and will be repeated n - 1 times for a total of

N= (n -1) (5 +m 1)

= 5n - 5 + nm1 - m1

cycles.

When n = 1, the decfsz instruction in line 4 does finally result in a zero,
causing it to consume two instruction cycles instead ofjust one and causing
the goto instruction in line 6 to be the next instruction. Following this

come the m2 nop instructions shown as starting in line 12, as well as the

return instruction in line 14. This series of instructions takes 2+2+ m2 +

2 = m2 + 6 instruction cycles. When added to the earlier total and the
single cycle consumed by the movwf instruction in line 2, we get

N = 1 + 5 n - 5 + n m 1 - m 1 + m 2 + 6

= 2+5n+nm1 -m1 +m2 .

Up to this point, the analysis is identical to that we did in class.

Suppose fXTAL = 10 MHz, so fINST = 2.5 MHz and TINST = 400 ns. If we

call the subroutine with the value n in the W register, how can we cause

this to consume time T = n x 100 µs?

What we want to do is set

(100 x n) µs = (2 + 5n + nm1 - m1 + m2)(400 ns)

100 000n - 2000n = 800 + 400m1n - 400m1 + 400m2

98000n = 400m1n - 400m1 + 400m2 + 800.

One way to achieve this is to set m1 = 98000

400 = 245:

98 000n = 98 000n - 400m1 + 400m2 + 800

0 = -400 x 245 + 400m2 + 800

98000 - 800

m2 = 400
= 243.

3

The delay time T can now be written as

T = (2 + 5n + nm - m + m2)(400 ns)

= (2 + 5n + n x 245-245 + 243)(400 ns)

= (250 x n)(400ns)

= n x 100 µs,

as desired.

The solution with m = 245 and m2 = 243 means there have to be 245 nop

instructions after the label delay decrement and another 243 of them after
the label delay continue. There is enough memory to accommodate this:
the PIC16F874 has 4096 implemented program memory locations and
these nop instructions will consume just 245 + 243 = 488 of them.
However, this is at best an inelegant approach. At worst, it will take pro-
gram memory that might be needed for more important tasks. A superior
method would be to use a looping construct to call a delay routine re-
peatedly. For example, we could write a subroutine that would repeatedly
call the version of the delay routine we did in class. Calling it 10 times in
quick succession would consume roughly 100 µs for each invocation. Care-
ful adjustments could make it more precise and it would take up much
less program memory.

