
1

EE461 Microprocessor-based Digital Design

Address-Bus Decoding

Solutions

1. Design the address bus decoding circuitry for a system with requirements
shown in Table 1 using suitable devices from amongst those shown in
Table 2. Assume addresses require 16 bits.

In your design, include a memory map, binary memory map, and chip-
select logic for all the devices.

With devices having multiple chip-select inputs, use them intelligently.
Don’t, for example, have a four-variable function connected to one of
them and a ground connected to another: create multiple functions to
take advantage of all the chip-select inputs.

SOLUTION

Starting
Device address

12k RAM 0x0000

8k ROM 0xC000
Two PIAs 0x6000
Two ACIAs 0x7000
One buffer 0xA000

Table 1: Desired System Configuration

Device Architecture Chip-Select Labels

4k ROM 4096x8 bits OE1, OE2

MC6820 PIA (Parallel I/O) 4x8 bits CS0,CS1, CS2

MC6850 ACIA (Serial I/O) 2x8 bits CS0,CS1, CS2

Octal buffer 1x8 bits G0,G1

74LS 165 Parallel-load 8-bit shift reg 1x8 bits LD

4k low-speed RAM 4096x8 bits OE1

Table 2: Available Devices



2

FFFF
E000
DFFF

2x4k ROM
C000
BFFF

A001
A000 1xbuffer
A000
9FFF

7004
7003 2xacia

7000
6FFF

6008
6007 2xpia

6000
5FFF

3000
2FFF 2x4kRAM
0000

Figure 1: Memory Map. Note that memory-space utilization is not drawn to scale.
For example, the 8 192-location ROM is shown as equal in size to the 1-location buffer.

First draw the memory map, as shown in Figure 1. The amount of RAM
required is given as 3 x 12k, which should be taken to mean 3 x 212= 12288.
The number of RAM devices can be obtained by simple arithmetic:

12288 B (1device/2^12 bytes) = 3devices

A similar calculation shows that we only need two ROM devices.

The uppermost address occupied by a particular type of device is found
by adding its extent to its starting address and reducing this total by 1.
In the case of the fast RAM, for example:

0x0000 + 12 28810 - 1 = 0x0000 + 0x3000 - 1

= 0x2FFF.

Next we prepare binary memory maps for each type of device, as seen in
Figure 2. The maps show the lowest and the highest address in binary



3

Figure 2: Binary memory map



4

Figure 3: Free Allocation Table



5

Figure 4: RAM Chip Select Logic

for each type of device. They also show
how the address is subdivided for a
particular device. Some address bits are
decoded internally, some are used as
chip-select bits to choose from among
several identical devices, and some are
used to determine the type of device being
accessed. The buffer used here does not
decode any address bits internally and,
because there is only one of them, there is
no need for chip-select bits to distinguish
between multiple buffers. The free-
allocation bits allow us to identify a class
of device; the chip-select bits (if any)
allow us to identify one device in that
class.

The free-allocation table is shown in
Figure 3. The buffer and the ROM are
the only devices whose address includes
a 1 in A15. The difference between them is
that for the buffer, the address includes a 0
in A14 whereas for the ROM, the address
includes a 1 in A14.

All other device addresses have a 0 in

A15. Of these, only the RAM has a 0 in
A14.

The remaining device addresses have a
1 in A14. Of these, the PIAs have a 0 in A12

and the ACIAs have a 1 in A12.

Armed with equations for identifying the
type of device, we can now turn our
attention to the chip-select logic for each
type of device. In each case, we need to



6

map the equations in the free-allocation
table (Figure 3) to the available chip-select
inputs (Table 2). In the case of device types
with more than a single device of that type,
we also need to map the chip-select address
bits to the chip-select inputs of each
device.

Figure 5: PTA Chip Select Logic

Figure 6: ACTA Chip Select Logic

Figure 7: Buffer Chip Select Logic

Figure 8: ROM Chip Select Logic



7

Often it is desirable to use one chip-select input for the equation for select-
ing a device type and use the remaining ones for the chip-select equations.
This does not work at all well for the RAM devices, as shown in Figure

4, because they have only a single chip-select input (OE1). In the case
of the buffer it does not apply because there is only a single buffer: the
free-allocation equation for the buffer is sufficient to select it. However,
the other devices can use this scheme.

Some of the chip-select inputs are active-low. In such cases, the input
equations must be inverted. So, for example, in the case of the RAM, we
know from the free-allocation table in Figure 3 that the RAM devices are
selected whenever we have A15 A14. When we connect the inverse of this

to the OE1 input we get

OE1 = A15 A14

= A15 + A14.

At this point we are ready to draw a schematic showing how to wire the
devices together. This can be seen in Figure 9. The data outputs and
any control signals not directly related to the decoding problem have been
suppressed from the schematic.



Figure 9: Schematic for the complete decoder
8


