
1

Assignment 5 Solutions

1. Consider the following program fragments for the PIC16F874. The listing
shows declarations from the beginning of the program source code file and
assembly language instructions from further along in that file.
Bearing in mind that data addresses require nine bits, use hexadecimal to
express the address at which will the result be stored? Data values in data
memory require eight bits. Use hexadecimal to express the value stored
at that address? What will be the values of the Z, DC, and C bits of the
STATUS register?

The bcf and bsf instructions have the effect of specifying bank 1 whenever
direct addressing is used.

The movlw instruction will place the value 4A16 in the W register.

The addlw instruction will add the value D716 to it, leaving the result
in the W register. The result of the addition is 12116, but only the least
significant eight bits of this will fit in the W register, which therefore holds
the value 21 16. The carry is reflected in the C bit of the STATUS register,
which is a 1. The DC bit is also set to 1 because of the carry from bit 3
into bit 4 (A + 7 = 1116).

Thee movwf instruction will copy the contents of the W register to address
0101000102 = 0A216, which is obtained by concatenating the RP1 and

1 X equ H’4A’

2 Y equ H’D7’
3 Z equ H’22’
4 RP1 equ H’6’
5 RP0 equ H’S’

. . .

8 bcf Status ,RP1
9 bsf Status ,RP0
10 movlw X
11 addlw Y

12 movwf Z
13 . . .



2

RP0 bits (01) to the seven least significant bits of the value of symbol
Z (2216 = 01000102). This corresponds to one of the general purpose
registers in bank 1. The movwf does not affect the status flags, so they
retain the values they got during the addlw instruction: Z = 0, DC =
1,C = 1.

2. Consider the following program fragments for the PIC16F874. The listing
shows declarations from the beginning of the program source code file and
assembly language instructions from further along in that file.

1 X data equ D’—21’ ; I n i t i a l value for X
2 Y data equ D’153’ ; I n i t i a l value for Y
3 X equ H’20’ ; Storage location for X
4 Y equ H’21’ ; Storage location for Y
5 Z equ H’22’ ; Storage location for Z

6 RP1 equ H’6’ ; Bit 6 of STATUS register
7 RP0 equ H’5’ ; Bit 5 of STATUS register
8 Status equ H’03’ ; Address of STATUS register
9 W equ 0 ; Destinat ion: W register
10 F equ 1 ; Destinat ion: f i l e register
11 . . .
12 bcf Status ,RP1 ; Designate Bank 0
13 bcf Status ,RP0
14 movlw X data ; I n i t i a l i ze X
15 movwf X
16 movlw Y data ; I n i t i a l i ze Y
17 movwf Y
18 movf X,W ; Retr ieve X
19 addwf Y,W ; Add in Y, put result in W
20 movwf Z ; Store result in Z
21 movf Y,W ; Retr ieve Y
22 subwf X,W ; W=X— Y
23 movwf Z ; Store result in Z
24 movf X,W ; Retr ieve X
25 andwf Y,W ; W=XAND Y
26 movwf Z ; Store result in Z
27 movf X,W ; Retr ieve X
28 iorwf Y,W ; W = X O R Y
29 movwf Z ; Store result in Z
30 movf X,W ; Retr ieve X
31 xorwf Y,W ; W=XXOR Y
32 movwf Z ; Store result in Z
33 . . .



3

The comments at the right end of each line shed light on what the pro-
grammer had in mind. However, do not assume that they accurately
indicate what the instructions really direct the processor to do.

Use unsigned hexadecimal to express the contents of location 2216 after
execution of the instructions in lines 20, 23, 26, 29, and 32. In each case,
indicate the contents of the Z, DC, and C bits of the STATUS register,
too.

SOLUTION

Lines 12 and 13 clear the RP1 and RP0 bits, so they really do specify
Bank 0 of the data address space for all subsequent instructions that use
direct addressing.

The combination of movlw andmovwf that appear repeatedly in lines 14
through 17 causes data to be transferred from an instruction into the W
register and from there to a specified location in the data address space.
In this case, the registers referred to as X, Y, and Z really are in Bank 0,
so the RP1 and RP0 bits of the STATUS register are correct.

From line 18 through 32 there repeatedly appears another commonly en-

countered sequence of assembly language instructions. The movf instruction
retrieves data from memory and places a copy in the W register, a
second instruction received another word from memory and combines it
in some manner with the word already in the W register, and the third

movwf instruction stores a copy of the the new contents of W into a des-
tination register. The results of the various operations of the program
are given in Figure 1 on the following page.

In the addition problem, the value 1531ü = specified in the program is con-
verted first by the assembler into an unsigned binary number 100110012.
However, the processor treats the operands of an addition problem as
two’s-complement numbers. In that system, 100110012’s comp = —1031o.
Therefore, the result of the addition is not —21 + 153 = 132, as the pro-
grammer likely intended, but —211o + (—1031ü) = —1241o.

However, in unsigned binary 132 = 100001002 and in two’s complement

—1241o = 10000100two’s complement, so the result was not disastrous after
all.

The addwf instruction also causes the status bits Z, DC, and C to be cal-
culated. The addition caused a carry from bit 3 to bit 4 as well as a carry
out of bit 7, resulting in DC and C both being set. The arithmetic result
was non-zero, so the Z-bit was cleared.

In the second problem, the subtraction problem, things are not quite so
fortunate. The desired result of the problem, presumably, is —21 — 153 =
—174. The actual result, as the table shows, is 010100102 = 5216 = 8210,



4

Line #
Contents of

location 2216 Z DC C Comments

20 8416 0 1 1 —211o = 111010112

1531 = 100110012

100110012’s comp = —1031o

111010112 + 100110012 = 100001002

100001002 = 8416 = —1242’s comp

—2110 + (—10310) = —1241o

23 5216 0 1 1 —2110 — (—10310) = 821 = 5216

—(—103)1o = 011001112’s comp = +10310

111010112 + 011001112 = 010100102

010100102 = 5216 = 8210

26 1116 0 1 1 111010112 A 100110012 = 100010012

100010012 = 8916

29 9D16 0 1 1 111010112 V 100110012 = 111110112

111110112 = FB16

32 0116 0 1 1 111010112 100110012 = 011100102

011100102 = 7216

Table 1: Table showing the results of the program’s execution

a positive result whether you regard the result as unsigned binary or two’s
complement. The essence of the problem is that the desired result —174
does not fit within an eight-bit word.

The subwf instruction also causes the status bits Z, DC, and C to be cal-
culated. The subtraction caused a carry from bit 3 to bit 4 as well as a
carry out of bit 7, resulting in DC and C both being set. The arithmetic
result was non-zero, so the Z-bit was cleared.

The remaining three problems are applications of bit-by-bit logical func-
tions. The symbol A indicates logical AND; the symbol V indicates logical
OR; and the symbol indicates logical XOR.

These three logical functions cause the Z-bit to be recalculated, but they
do not affect the DC- and C-bits. As a result, these two bits remained set
through all three logical functions. Although the Z-bit was recalculated
each time, the logical result of each instruction was a non-zero value, so
the Z-bit was cleared each time.


