
Serial Design for Finding the Two’s Complement

Example Report for a VHDL Design

CDR Charles B. Cameron

21 January 2005

1 Purpose

The purpose of this report is to provide an example of a VHDL model and a
report explaining the model and showing the results of its simulation.

The model is an implementation of the state diagram in Figure 1. Its pur-
pose is to take the two’s complement of an input bit string, least-significant
bit first. The idea underlying the algorithm is to output each input bit unal-
tered until the first 1 is encountered, output it unaltered too, and thereafter
complement every input bit.

2 Equipment

Altera Quartus II software.

3 Design

Listing 1 gives a VHDL module which implements an SR latch. This latch will
be useful later in implementing output E of the state machine.

The inputs to the module are:

s This active-high input forces the latch to be set.

r This active-high input forces the latch to be cleared (reset).

The outputs of the module are:

q This active-high output reflects the current state of the latch.

qn This active-low output also reflects the current state of the latch.

The model uses a VHDL PROCESS statement. Careful consideration of the
model shows that input s has precedence over input r. This means that if both
signals are asserted simultaneously, the latch will contain the value 1. However,
it is not intended that this ever occur, i.e., such usage is “forbidden”.

1

Start Two's
Complement

Process

A

Done, D

1x

00 01

C

E

DClock
0

1

B

DClock
1

D

0

Done, D

G

F

DClock
0

1

01
H

00

J

DClock

K

1

0

1x

ER↑SB↓SE

ES↑SB↓SE ER↑SB↓SE

ES↑SB↓SE

ER↑SB↓SE

ER↑SB↓SE

L

Done, DClock

1x
x1

00

Figure 1: State diagram for taking the two’s complement of a number, least-
significant bit first.

2

Listing 1: Module srlatch.vhd

1 −− Module Name : s r l a t c h . vhd
−− Desc r ip t i on : Implements an SR la t ch
−− Input : s = ’1 ’ to s e t the l a t ch .
−− r = ’1 ’ to r e s e t the l a t ch .
−− Output : q= the latch ’ s va lue .

6 −− qn = NOT(q)
−− I n t e r n a l S i gna l s : q s i g n a l . Used to compute q .
−−
−− I t i s f o rb idden to a s s e r t s and r s imulataneous ly .
−− I f t h i s i s done , though , s takes precedence and

11 −− the l a t ch w i l l be s e t .
LIBRARY IEEE ;
USE IEEE . s t d l o g i c 1 1 6 4 .ALL;

ENTITY s r l a t c h IS
16 PORT(

s , r : IN STD LOGIC;
q , qn : OUT STD LOGIC) ;

END s r l a t c h ;

21 ARCHITECTURE behavior OF s r l a t c h IS
SIGNAL q s i g n a l : STD LOGIC;

BEGIN
la t ch :

26 PROCESS(s , r)
BEGIN

IF s = ’1 ’ THEN
q s i g n a l <= ’1 ’ ;

ELSIF r = ’1 ’ THEN
31 q s i g n a l <= ’0 ’ ;

ELSE
END IF ;

END PROCESS la t ch ;

36 q <= q s i g n a l ;
qn <= NOT q s i g n a l ;

END behavior ;

3

Listing 2 gives a VHDL module which implements the function flowchart of
Figure 1. It also shows how the SR latch can be stored as a component in a
package within a library. This makes it available to other, higher level modules,
such as module lab1 2 beginning at line 13 in the listing. A single instance
of the SR latch is created in lines 37–39. Additional instances with unique
labels and separate signals connected to the inputs and the sole output could
be created in a similar manner: by instantiating them with more VHDL PORT
MAP statements.

The inputs to the module are:

clock This is a high-speed clock. A new state is chosen every time this signal
goes high.

reset This active-high signal forces the state machine to state a, its initial state.

DClock This is a low-speed data clock. Its period corresponds to the period of
one bit of input data D and one bit of output data E.

Done This active-high signal indicates that the input data stream from signal D
is complete. Shortly after this signal is released, the state machine returns
to its initial state, a.

D This is the input data stream. The two’s complement number arrives least
significant bit. There is no limitation on the length of the number. Its
most significant bit is immediately followed by assertion of signal Done.

The outputs are:

E This is the output data stream. The negative of the input two’s complement
number represented by signal D is generated least significant bit first.
There is no limitation on the length of the number. Its most significant
bit partially overlaps assertion of signal Done.

state out This is a four-bit encoding of the states and is only present to show
clearly that the value of the signal state (an internal signal) is the next
state we require, not the current state.

Listing 2: Module lab1 2.vhd

LIBRARY IEEE ;
USE IEEE . s t d l o g i c 1 1 6 4 .ALL;

5 PACKAGE lab1 2pkg IS
COMPONENT s r l a t c h

PORT(
s , r : IN STD LOGIC;
q , qn : OUT STD LOGIC) ;

4

10 END COMPONENT;
END lab1 2pkg ;

LIBRARY IEEE ;
USE IEEE . s t d l o g i c 1 1 6 4 .ALL;

15
LIBRARY work ;
USE work . lab1 2pkg .ALL;

20 ENTITY lab1 2 IS
PORT(

c l o ck : IN STD LOGIC;
r e s e t : IN STD LOGIC; −− a c t i v e High
DClock : IN STD LOGIC; −− a c t i v e High

25 Done : IN STD LOGIC; −− a c t i v e High
D : IN STD LOGIC; −− Input two ’ s

complement number
E : OUT STD LOGIC; −− Negative o f E
s t a t e ou t : OUT STD LOGIC VECTOR (3 downto 0)) ;

END lab1 2 ;
30

ARCHITECTURE behavior OF lab1 2 IS
TYPE STATE TYPE IS (a , b , c , dd , ee , f , g , h , j , k , l) ;
SIGNAL s t a t e : STATE TYPE;
SIGNAL ER : STD LOGIC; −− Used to r e s e t the E l a t ch

35 SIGNAL ES : STD LOGIC; −− Used to s e t the E la t ch
BEGIN

E latch : s r l a t c h
PORT MAP (

s=>ES , r=>ER, q=>E) ;
40

PROCESS (c lock , r e s e t)
BEGIN

IF r e s e t = ’1 ’ THEN −− goto s t a t e a
s t a t e <= a ;

45 s t a t e ou t <= ”0000”;
ELSIF (c lock ’EVENT AND c lock = ’1 ’) THEN

ER<=’0 ’;
ES<=’0 ’;
CASE s t a t e IS

50 WHEN a=>
ER<=’1 ’; −− Clear output E
IF DClock= ’0 ’ THEN

s t a t e <= a ;
ELSE

55 s t a t e <= b ;
END IF ;
s t a t e ou t <= ”0000”;

5

WHEN b=>
60 IF Done= ’1 ’ THEN

s t a t e <= l ;
ELSE

IF D<=’0’ THEN
s t a t e <= c ;

65 ELSE
s t a t e <= ee ;

END IF ;
END IF ;
s t a t e ou t <= ”0001”;

70
WHEN c=>

ER<=’1 ’;
s t a t e ou t <= ”0010”;
s t a t e <= dd ;

75
WHEN dd=>

IF DClock= ’0 ’ THEN
s t a t e <= a ;

ELSE
80 s t a t e <= dd ;

END IF ;
s t a t e ou t <= ”0011”;

WHEN ee=>
85 ES<=’1 ’;

s t a t e ou t <= ”0100”;
s t a t e <= k ;

WHEN f=>
90 IF DClock= ’0 ’ THEN

s t a t e <= f ;
ELSE

s t a t e <= g ;
END IF ;

95 s t a t e ou t <= ”0101”;

WHEN g=>
s t a t e ou t <= ”0110”;
IF Done= ’1 ’ THEN

100 s t a t e <= l ;
ELSE

IF D= ’0 ’ THEN
s t a t e <= j ;

ELSE
105 s t a t e <= h ;

END IF ;
END IF ;

6

WHEN h=>
110 ER<=’1 ’;

s t a t e ou t <= ”0111”;
s t a t e <= k ;

WHEN j=>
115 ES<=’1 ’;

s t a t e ou t <= ”1000”;
s t a t e <= k ;

WHEN k=>
120 IF DClock= ’0 ’ THEN

s t a t e <= f ;
ELSE

s t a t e <= k ;
END IF ;

125 s t a t e ou t <= ”1001”;

WHEN l=>
IF Dclock = ’1 ’ OR Done= ’1 ’ THEN

s t a t e <= l ;
130 ELSE

s t a t e <= a ;
END IF ;
s t a t e ou t <= ”1010”;

135 WHEN OTHERS =>
s t a t e <= a ;
s t a t e ou t <= ”0000”;

END CASE;
140

END IF ;
END PROCESS;

END behavior ;

The main part of the state machine is embodied in a process controlled by
changes in clock. Upon detection of an asserted reset, the state machine is forced
into state a. If reset has not been asserted then ER and ES are given default
values of ‘0’, meaning that the s and r inputs to the SR latch are normally not
asserted. In the CASE statement which follows, these settings are overridden as
needed.

The CASE statement has a separate WHEN clause for each possible state. When
ER or ES must be asserted (as shown in the state diagram of Figure 1), appro-
priate signal assignments are included.

Each state includes the assignment of a unique four-bit code to the signal
state out as well as an assignment to signal state which tells the machine what
state to go to next. There is no special need to include state out except that it
makes very clear in the simulations what the current state really is, something

7

Date: January , 2005 db/srlatch.sim.vwf Project: srlatch

Page 1 of 1 Revision: srlatch

s
r

qn
q

15.075 ns
0 ps 640.0 ns 1.0 us

Figure 2: Simulation of module srlatch.vhd, an SR latch
Date: January , 2005 db/lab1_2.sim.vwf Project: lab1_2

Page 1 of 1 Revision: lab1_2

reset
Done

DClock
D

clock
E

state_out
State

0000 0011 0000 10010101 1001 0101 10010101 1001 0101 10010101 1001 0101 10010101 1001 0101 1010
0 8 0 9 A 9 A 9 A 9 A 9 A 9 A 9 A 9 A 2 0

1.24 us
0 ps 1.28 us 2.56 us 3.84 us 5.12 us 6.4 us 7.5 us

Figure 3: First simulation of module lab1 2.vhd: 0101000 → 101100, or 40 →
−40.

which can be helpful in debugging the code.
In the case of some states, transition to the next state is contingent on one

or more input variables. These decisions are embodied in IF. . . ELSE constructs.

4 Observations

Figure 2 shows the result of simulating module srlatch.vhd using the Altera
Quartus II software. The simulation shows that output q goes high whenever
s goes high and it goes low whenever r goes high. In the forbidden case that
both s and r are asserted simultaneously, q goes high, as shown from 900 ns to
965 ns. Signal qn is the complement of signal q.

Figure 3 shows one simulation of the lab1 2.vhd module. Note that the
system clock, clock, has a significantly higher frequency than the data clock,
DClock. Also, quite a few of the states are of such brief duration that they do
not show up clearly in the simulation output.

The data bits last from one falling edge of DClock to the next. They are sam-
pled on the rising edge of DClock, as required by the state diagram in Figure 1.
The input number appears least significant bit first as signal D. In standard
notation where the most significant bit is at the left and the least significant
bit is at the right, the input number is 0101000. The decimal equivalent is 40.
The output appears at signal E and it, too, appears least significant bit first. In
standard notation it is 1011000 and its decimal equivalent is −40.

Figure 4 shows another simulation of the lab1 2.vhd module. In this sim-
ulation the input number, expressed in standard notation, is 011001001 and its

8

Date: January , 2005 db/lab1_2.sim.vwf Project: lab1_2

Page 1 of 1 Revision: lab1_2

reset
Done

DClock
D

clock
E

state_out
State

0000 1001 0101 10010101 1001 0101 10010101 1001 0101 10010101 1001 0101 10010101 1001 0101 1010
0 9 A 9 A 9 A 9 A 9 A 9 A 9 A 9 A 9 A 2 0

14.975 ns
0 ps 1.28 us 2.56 us 3.84 us 5.12 us 6.4 us 7.5 us

Figure 4: Second simulation of module lab1 2.vhd: 011001001 → 100110111,
or 201 → −201.Date: January , 2005 db/lab1_2.sim.vwf Project: lab1_2

Page 1 of 1 Revision: lab1_2

reset
Done

DClock
D

clock
E

state_out
State

0000 0011 0000 00110000 0011 0000 10010101 1001 0101 10010101 1001 0101 1010 0000 0011 0000 0011
0 8 0 8 0 8 0 9 A 9 A 9 A 9 A 2 0 8 0 8

14.975 ns
0 ps 1.28 us 2.56 us 3.84 us 5.12 us 6.4 us 7.5 us

Figure 5: Third simulation of module lab1 2.vhd: 1001000 → 0111000, or
−56 → 56.

decimal equivalent is 201. In standard notation the output is 100110111 and its
decimal equivalent is −201.

Figure 5 shows a final simulation of the lab1 2.vhd module. In this sim-
ulation the input number, expressed in standard notation, is 1001000 and its
decimal equivalent is −56. In standard notation the output is 0111000 and its
decimal equivalent is 56. This shows that the system finds the negative of its
input whether the input itself is positive or negative.

A closer look at the simulation of the state machine shows that there is a
distinction between the signal state out and the signal State. Signal state out
appears in the VHDL code of Figure 2. Signal State does not. Figure 6 shows
how the state names specified as enumerated variables in the VHDL specifi-
cation in Listing 2 are related to the internal state variables created by the
Quartus II program. For example, state k has the assignment state˜35 = 1,
state˜34 = 0, state˜33 = 0, and state˜32 = 1. The VHDL code specifies the
output state out = 1001. By chance, these are the same. But look instead
at state j, where the Quartus II program makes the assignment state˜35 = 0,
state˜34 = 1, state˜33 = 1, and state˜32 = 0 while the VHDL code specifies
the output state out = 1000.

Because the association made by Quartus II to the internal state variables
is available, there is no need to create a variable state out in the VHDL specifi-
cation, something that was done solely to aid in debugging the code. Figure 7
shows a detail of the waveform in Figure 3 extending from 0 ns to 800 ns. The

9

Date: January , 2005 Project: lab1_2

Page 1 of Revision: lab1_2

Name state~35 state~34 state~33 state~32
state.a 0 0 0 0
state.b 0 0 0 1
state.c 0 1 0 0
state.dd 1 0 0 0
state.ee 0 1 0 1
state.f 1 0 1 0
state.g 0 0 1 1
state.h 0 1 1 1
state.j 0 1 1 0
state.k 1 0 0 1
state.l 0 0 1 0

Figure 6: Quartus II creates its own variables for state assignments. The associ-
ation between the states specified in the VHDL source file and the internal state
variables can be found in the Quartus II compilation report under Analysis &
Synthesis, State Machines.

Date: January , 2005 db/lab1_2.sim.vwf Project: lab1_2

Page 1 of 1 Revision: lab1_2

reset
Done

DClock
D

clock
E

state_out
State

0000 0001 0010 0011
0 1 4 8 0

40.0 ns
0 ps 320.0 ns 640.0 ns 800.0 ns

Figure 7: Detail from the simulation in Figure 3 extending from 0 ns to 800 ns.

10

sequence of states (signal State) is 0, 1, 4, 8, corresponding to a, b, c, and dd as
the correspondence in Figure 6 shows. This sequence matches that specified in
the state diagram of Figure 1.1 The signal state out does not reflect these state
assignments until a full clock cycle later. It is therefore clear that the VHDL
process does not change the outputs immediately. In effect, it schedules them
but the outputs do not become effective until the end of the state.

5 Conclusions

The output signal E stays high even after the Done signal has been asserted.
This is in accord with the way the state diagram was written but is a little
disconcerting since it makes it appear that the output has more 1 bits than it
really does. An improvement to the design would entail asserting signal ER in
state l.

In all other respects the circuit appears to work as intended, generating the
two’s-complement negative of an input number or series of numbers.

1Note, though, the state d in the state diagram is called dd in the VHDL code because
the symbol d was already used for one of the output signals. VHDL is not case sensitive, so
a different name for the state had to be chosen. A similar explanation applies in the case of
state e.

11

	Purpose
	Equipment
	Design
	Observations
	Conclusions

