
1

EE461 Microcomputer-Based Digital Design

Lab1

Introduction to the PIG 16F874

This lab has two parts:

1. Debug an elementary program, use a simulator to test it, download it into a
PIC16F874 chip, and use the oscilloscope to record the output waveform and
certain relevant measurements.

2. Modify the program to make it count from 0 to 25decimal, debug it, simulate
its operation, download it into a PIC16F874 chip, and use the oscilloscope
to record the output waveform and certain relevant measurements.

Part I: An elementary program is given in toggle.asm, shown below in Listing
1 on page 6 and also posted on the course web site. Use Microchip’s
Integrated Development Environment (IDE), known as MPLAB, to
create a project for this program by following these steps:

(a) Save file toggle.asm in a suitable folder (directory).

(b) Create a new project using the menu choices Projecti Project Wiz-
ard....

(c) In the Project Wizard dialog

i. select Next,

ii. specify the PIC16F874 device and choose Next,

iii. specify the Microchip MPASM Toolsuite under Active Tool-
suite, the MPASM assembler under Toolsuite Contents, and
the location of the executable program MPAsmWin.exe for

Location.
1

Then choose Next.
iv. Give the project a suitable Project Name (Lab3Toggle, for

example) and Project Directory. The same directory where
you have already stored toggle.asm is suitable but not nec-
essary.

v. Find your copy of toggle.asm in the window on the left and

Add it to the window on the right. If your program is not in
the same directory as the project you are creating,

'The default location is /Program Files/Microchip/MPASM Suite/MPAsmWin.exe.

2

then check the box beside the file name to cause a copy to
be saved in your project directory. Choose Next.

vi. Choose Finish.

(d) You will see a project window with entries for Source Files,
Header Files, and so on. The file toggle.asm should be listed
under the Source Files. You can open it in MPLAB by double-
clicking on its name in the list.

(e) Study the assembly language code.

 Everything appearing after a semicolon on a line is a com-
ment. Use comments on individual statements to clarify the
purpose of your instructions, not just to state what they do.
Refer to the microprocessor program documentation stan-
dards on the web site at URL

http://www.usna.edu/EE/ee461/Lab/index.htm

for further details.

 Labels begin in the left margin. The label actually refers to
the next instruction encountered, whether it appears on the
same line or on a subsequent line.

 The first symbol appearing on a line and that is not actually
positioned at the left margin is assumed to be either an
assembly language instruction or a directive to tailor the
operation of the assembler.

 The ensuing symbols, if any, are either one or two arguments
to the instruction or arguments to the assembler directive.

 Line 30 refers to file p16f 874.inc. This file contains state-
ments relating predefined register names and bit names to
their equivalent numerical addresses and bit positions. It is
useful to examine the contents of the file, both to see how
to spell the predefined names in a program and to see how
the equivalence is established.

2

 The configuration bits for the processor are specified in line
32. See chapter 14 of the PIC16F87XA Data Sheet for details.

 Programs in microcontrollers can be divided into four sec-
tions:

– Symbol definitions and data storage allocation. The
p16f 874.inc file specifies some of the definitions used
in toggle.asm. Look in the MPLAB help file for the
assembler (MPASM) to see the permissible formats for
specifying constants of various radices (bases).

– Initializations,

– Interrupt routines,

2
The default location for the include file is /ProgramFiles/Microchip/MPASM%20Suite.

http://www.usna.edu/EE/ee46

3

– A control loop.

In the program in file toggle.asm no use of interrupts is
made, so that section is empty.

(f) Some registers need to be initialized in order to make it possible
to use Port A. These are specified where Port A is described in

the PIC16F87XA Data Sheet. Once these registers have been
initialized, an exclusive-or instruction is executed repeatedly to
make bit 0 of Port A toggle repeatedly.

(g) Assemble the program using Project|Build All. There are some
syntax errors in toggle.asm and the assembler will provide
warnings to complain about them. Figure out what is wrong and fix
them. You can quickly get to the erroneous line by double-
clicking on the error message. You will also get some warnings
concerning operands that are not in bank 0. The assembler is
smart enough to know that you should have manipulated the
RP1:RP0 bits before you touch registers in other banks, but it
is not smart enough to know whether you have done so correctly
or not. Decide whether these warnings can be ignored or not. If
not, fix the problem and continue trying to assemble the program
until you do not get any more errors.

(h) Activate the simulator by selecting Debugger|Select Tool|MPLAB
SIM.

(i) Display the special function registers by selecting View|Special
Function Registers.

(j) Step through the program one instruction at a time by repeatedly
selecting Debugger|Step Into. Each time an instruction executes,
changes to the contents of the special function registers appears in

red. Make sure you understand the reason for every change that

you see by reading in the PIC16F87XA Data Sheet the details for
each instruction executed. If you ignore this direction, you will
have a hard time with the entire rest of the course.

(k) When your understanding is complete, select Debugger|Animate
to see the debugger go through the instructions repeatedly.

(l) Download your program into a PIC16F874 chip by taking a
copy of the file toggle.hex to one of the computers that has a
PICSTART Plus development programmer attached to it. Use

MPLAB to read in the hex file by selecting File|Import.... In

the Open dialog, find your hex file and Open it. You can see
the machine code from your program by selecting View|Program
Memory. At the bottom of the Program Memory window you
can specify any of three different formats in which to view your
program. The symbolic format is probably easiest to inter-
pret. Store the machine code into a PIC16F874 chip by lock-

4

Figure 1: Schematic for a circuit to go with the program in Listing 1 on page
6. The capacitors shown should suffice. Larger ones will produce greater stability
but will delay the start of execution of the program, which seldom is
objectionable. The value of the pull-up resistor is not critical either, since it
only affects the quiescent current flowing through it. In this case, the power is
(5 V)

2
/1 kΩ= 25 mW, low enough not to cause overheating.

5

ing the chip in the PICSTART Plus programmer and selecting
Programmer|Select Programmer|PICSTART Plus. Then select
Programmer|Program.

(m) Remove your PIC16F874 chip from the programmer and insert
it into your own protoboard. It should be wired up like the
chip in Figure 1 on the previous page, which also exemplifies
the way you should draw your own schematic diagrams. Note
that bit 4 in Port A requires a pull-up resistor because it is an
open-drain output. In general, check to see what kind of output
driver a pin has before deciding it needs a pull-up resistor. The
value of the pull-up resistor causes the resistor current to be
5 V/1 kΩ = 5 mA, a small enough value for this application
because it will not generate too much heat.

Connect output x to one of the digital inputs of the oscilloscope.
Measure the duty cycle and the period of the waveform using
two methods:

 manual adjustments of the cursors and

 automatic measurements.

Capture the waveform for inclusion in your report. Make sure
that the input is labeled x right on the oscilloscope screen.

Part II: Modify the program toggle.asm to make it count from 0 to 25decimal

repeatedly and output the five-bit result to Port A. Debug the program,
simulate its operation, download it into a PIC16F874 chip, and connect it in a
suitable circuit whose schematic should be a part of your report. Use the
oscilloscope to record the output waveform, labeling each signal clearly. The
signals are X4 (the most significant bit) through X0 (the least significant
bit.) Measure the time it takes to go through the complete cycle. Also
measure the time to change from one value to the next. If the time to
change from 25 back to 0 is different, measure and report

6

list p=16f874 ; list directive to define processor

#include <p16f874.inc> ; processor specific variable definitions

__CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON
& _HS_OSC & _WRT_ENABLE_ON & _LVP_OFF & _CPD_OFF

; '__CONFIG' directive is used to embed configuration data within the .asm file.

; The labels following the directive are defined in the 16f874.inc file.

; See the data sheet for additional information on the configuration word.

; The particular choice given above turns code protection off, watch dog timer off,

; brown-out reset disabled, power-up timer enabled, HS oscillator mode selected,

; flash program memory write disabled, low-voltage in-circuit serial programming

; disabled, and data EE memory code protrection off. Other choices

; might be useful in certain circumstances. For example, if the watchdog timer

; were in use, replacting _WDT_OFF with _WDT_ON would be appropriate.

;***** VARIABLE DEFINITIONS

; Bits within PORTA

ToggleBit equ B'00010000' ; Designates bit 4 of Port A.

; This is an
open-drain output bit, so

; a pull-up
resistor is needed.

TRISAMask equ B'11101111' ; Make bit 4 of PORT A an output.

; Leave the
rest as input bits.

ADCON1InitMask equ B'00000110' ; Make all PORT A bits digital, not
analog

; ***

ORG 0x000 ; Start with the processor's reset
vector

clrf PCLATH ; Ensure page 0 is used

goto main ; Go to beginning of program

7

main

; ***

; Initialize registers as required

; ***

bcf STATUS,RP0 ; Select Bank 0

bcf STATUS,RP1

clrf PORTA ; Initialize Port A by clearing
the output latches.

; ***

; Switch to Bank 1 and continue doing initializations.

; ***

bsf STATUS,RP0 ; Select Bank 1

movlw TRISAMask ; Initialize direction pins for
Port A using TRISA.

movwf TRISA

movlw ADCON1InitMask ; Initialize the ADCON1
register to control which

; Port A pins
use analog inputs.

movwf ADCON1

bcf STATUS,RP0 ; Revert to Bank 0

; main()

; This is the main program. It does only one thing: toggle PORTA<togglebit>

loop

movlw ToggleBit

8

xorw PORTA,f

goto loop ; Repeat ad infinitum

; ***

END ; directive to assembler: this is the end of the program

