
1 PIC16F874 Timing Programs

1 de lay
2 movwf de lay count
3 de lay decrement
4 decfsz delay count ,F
5 goto de l ay cont inue
6 goto de lay end
7 de l ay cont inue
8 nop ; m1 nop i n s t r u c t i o n s go here
9 . . .

10 goto delay decrement
11 de lay end
12 nop ; m2 nop i n s t r u c t i o n s go here
13 . . .
14 return

Timing Analysis: Whenever n > 2, the decfsz instruction in line 4 will
not result in 0. It will then take only a single instruction cycle to execute
and the next instruction to execute will be the goto instruction in line 5.

This, in turn, results in the m1 nop instructions shown as starting in line
8 being executed, along with the goto instruction in line 10.

This series of instructions takes 1+2+m1 +2 = 5+m1 instruction cycles
and will be repeated n− 1 times for a total of

N = (n− 1)(5 + m1)

= 5n− 5 + nm1 −m1

cycles.
When n = 1, the decfsz instruction in line 4 does finally result in a zero,

causing it to consume two instruction cycles instead of just one and causing
the goto instruction in line 6 to be the next instruction. Following this come
the m2 nop instructions shown as starting in line 12, as well as the return
instruction in line 14. This series of instructions takes 2+2+m2+2 = m2+6
instruction cycles. When added to the earlier total and the single cycle

1



consumed by the movwf instruction in line 2, we get

N = 1 + 5n− 5 + nm1 −m1 + m2 + 6

= 2 + 5n + nm1 −m1 + m2.

Performance with fXTAL = 4 MHz: Suppose fXTAL = 4 MHz, so fINST =
1 MHz and fINST = 1 µs. If we call the subroutine with the value n in the
W register, how can we cause this to consume time T = n× 10 µs?

What we want to do is set

10n = 2 + 5n + nm1 −m1 + m2

5n = 2 + nm1 −m1 + m2.

One way to achieve this is to set m1 = 5:

5n = 2 + 5n−m1 + m2

0 = 2− 5 + m2

m2 = 5− 2

= 3.

The number of cycles of delay N can now be written as

N = 2 + 5n + nm1 −m1 + m2

= 2 + 5n + 5n− 5 + 3

= 10n,

as desired.
Now to get a delay of, say, 100 µs, all we need to do is place the value

100 in the W register and call this delay routine.
Longer delays can be achieved either by modifying the number of nop

instructions (that is, changing m1 and m2,) or by calling this subroutine
multiple times. Since doing this will introduce extra overhead not accounted
for in this analysis, the delay may not be an exact multiple of 10 µs. Calling
the subroutine one time fewer than needed and then adding some additional
delay can correct the problem if this is important.

Of course, this method ties up the processor completely while the delay
takes place and so is a completely unsuitable method to use if the processor
has other work to do while waiting. In such a case, it makes much more sense
to use interrupt processing and the PIC16F874’s built-in timer hardware.

2


