LAB1: Introduction and Equipment Set-up with VHDL

Abstract

Learn to use the Altera Quartus development environment and
the DE2 boards by implementing a small hardware design that
displays and modifies the contents of a small memory.

1 Introduction

Use the Altera DE2 board to implement a simple hardware de-
sign. Describe its behavior using the VHDL language and use
Alterd s Quartus tools to synthesize and program the FPGA de-
vice. Usea VHDL simulator to verify and debug the design.

The circuit you program into the FPGA will display and

modify the contents of a 16 X 8 bit RAM. Although there are
dedicated RAM chips on the DE2 board, for simplicity use a
RAM inside the FPGA. Use four pushbuttons as inputs and
three seven-segment LED displays as outputs. Two push buttons
should step up and down through the sixteen RAM locations; the
other two should increment and decrement the contents of the
currently-displayed memory location. One seven-segment dis-
play should show the current address (0—+F), two others should
display the contents of that location in hexadecimal (00—FF).

You will learn to set up a project in the Altera Quartus tool,
run a VHDL simulation, and compile and download your design
to the FPGA. VHDL is a hardware description language, and the
process of using it is very different than developing programs in
C++ or Java. You will need these skillsin later labs and while
you are developing your project.

Below, we introduce the DE2 board, show how to start a new
project from atemplate, add VHDL code to a project, simulate
it, and compile and download a design to the FPGA.

2 The DE2 Board

Figure 1 shows the Altera DE2 board. It condsts of an Altera
Cyclone Il FPGA connected to a variety of peripheras including
512K of SRAM, 4MB of Flash, 8 MB of SDRAM, VGA output,
Ethernet, audio input and output, and USB ports. For this lab,
we will use four of the eight seven-segment LEDs and the four
blue pushbuttons. There are three USB connectors on the top
of the board. The leftmost one—the one nearest the 9V DC
connector—is for connecting the Altera “Blaster” cable to the
workstation. It is through this connection that the FPGA will be
programmed, that debugging information flows, etc. The other
two USB ports can be used in projects.

The DE2 board holds two quartz crystal oscillators (clock
sources: little silver boxes labeled with their frequencies). We
will use the 50 MHz clock for this lab; there is dso a 27 MHz
clock designed for VGA timing.

The DE2 board has built-in configuration for testing and
demonstration purpose. You can verify the board is working
properly by observing this default behavior. Use the following
procedure to power up the DE2 board.

First, connect the USB blaster cable from the USB port on
the workstation to the USB Blaster connector on the DE2 board.

Next, connect the 9 V adapter to the DE2's power connector at
the top left corner. Third, verify the RUN/PROG switch on the
left edge of the DE2 board (just to the left of the LCD display)
isinthe RUN position.

Power on the DE2 board by pressing the red ON/OFF switch
in the upper left corner. The LEDs should flash and the LCD
should display “Welcometo the Altera DE2 Board.”

To download our design and override the default configura-
tion of the FPGA, we use a JTAG port (JTAG is a ubiquitous
standard that stands for the IEEE Joint Test Action Group). The
Altera Quartus tool running on the workgation sends the con-
figuration bit stream through the USB cable to the Cyclone Il
FPGA. Once programmed, the FPGA retains its configuration as
long as power is applied to the board; it islost when the power
isturned off. We cover the details of this process below.

3 Getting Started with Quartus

Quartus is Altera’s development environment for FPGAs. It
consists of an IDE and a “compiler” that can trandate circuits
described in VHDL into configuration data for the FPGA. Start
the Quartus IDE.

Altera provides a variety of reference designs for the DE2.
For lab 1, we modified the DE2_Top design dightly, which con-
tains information about what each pin on the FPGA is
connected to and a top-level VHDL module with a port for
each pin.

Download the labl files from the class website. This will
place the project files, listed in Table 1, in the current directory.

DE2 TOP.gpf is the top Quartus project file. To open the
project file, use File—=+Open Project and select DE2_TOP. Once
the project is opened, you can see and change 1/O pin assign-
ments with Assignment—+Pins. Figure 2 shows this dialog.

Table 1: Filesin the DE2_TOP project

Role

DE2_TOP.qpf Quartus Project File
DE2_TOP.gsf Pin assignments, etc.
DE2_TOP.vhd Top-level VHDL file

Name

USB uSB WUSB Ethemet
Blasler Device Host Mic Line Line Video VGAVideo 10/100M

Pot Pot Pot in in Oul In Port Pot RS-Z32 Pont
9V DC Power
wmems—3 4 L ELIEL T8
27-MHz Oncillator . — T L
24-hit Audio Codec
Power ON/OFF Switch <=p- P52 Keyboard/ Mouse Port
VGA 10-bit DAC
USB Host/Slave Controlier
TV Decoder (NTSC/PAL) Ethernet 1(4100M Contraliar
Expansion Header 2 (JP2}
Altera USB Blaster Controller Chipsel . i R
Altera EPCS16 Configuration Device i e
Altern Cyclone || FPGA
RUN/PROG Switch for JTAG/AS Modes -
16x2 LCD Modute 1 S0 Cond Skt
7-Segment Displays 8 Green LEDs
— DA
18 Red LEDs n rDA Transceiver
.— SMA External Cloek
18 Toggle Smitches

4 Debounced Pushbution Swilches

50-MHz Oscilator B-MBSDRAM 512KB SRAM 4-MB Flash Memory
Figure 1

For Quartus to configure an FPGA, it must know which pins on the FPGA perform what roles (i.e., what each is named). This

information is board-specific since the pins on the FPGA can be wired to arbitrary peripherals. The DE2_TOP.gsf file contains this
information for the DE2 board.

DE2_TOP.vhd is the top-level VHDL module for the project, which mostly lists the top-level ports, i.e., the VHDL names for the
pins. It also setsthe state of the LEDs.

Although you do not need to modify /O pin settings for this lab, you may need to do so in the future. Assignment—+Pin Planner,
shown in Figure 3, opens adisplay that shows the physical location the pins on the FPGA and their assignments.

% Quartus Il « F/DE2_Top/ME2_TOP - DEZ_TOP - [Assignmenl Editor]

G Fl Edt view Fropct Assonments Procsssng Toos Windew Help - = L
= ; o - o I Bl LI i]
D@ @ %W - 6|0 T0P MR D> kBB @ ik 3 [@ & Fn Fansar) '
FroRct NI BRI i iCuety [P
;""Fm izl 5 OE2_ TOP | 4 Assignment Editar e o o
=5] r = T B DEZTOF B,
524 Device Design Fias Z |1 5 cawgoree |[0 =] & aff@rrn & Tineg| * Logiopins i me2
| ‘- DEZTOPY 2| 8 =
|23 Soltwere Files | ModaFiftec | Shek e Made FIST Bution e mars DREErE >
3 Othes Files a o =t =
7 Trformation: | Thi ool speciizs i pinname o which you want 10 mas an ssignmant. ol | I
. ==
| 140 Bark: |5 Staretard 6= e[l=
=i =3 T 5 e :
[] LTl &]| s
= T i LT o wl=—
Siieracch) Briies [Foesanvin] |+ |} e e i o | -
A0 == (85 |f iF Lumii; o #paa -
[taciie [Prear. =T 8] hd |- " =T e = | i o
7 — I~ B
.; fi » =hnnedy x| 41 B
T Fiva b T ot LT =
i | . "
taen f, Procasaing || Eviraiio | b0, SWaiming i Cikcal Weming f Enor J Supprassed il
systom | .i s e VT 7 T,
- ifosan b 2| &l =] oo | b 1] 4]
i Fekipress F1 LELELD) T | ST (3 R
Figure 2 Figure 3

prajed Click Add Al add alf design lesinthe project

s | |

A A |

¥ Quainis || + FAIRbE/ET_TOF TR « [du2_rruiltialisr whd]

SiaralTap | Logic Anahersr
LagicAnelyrer Inesiace

|
B T
|
o |

31 Bofwers Buld Satings
HaudCopy Setings

Fisnams

[FDEZ_TOR aytacne vhi® 'Iabi " ‘Fasat

open

Files ofbpe cancal |

[Dimain Fies Firks = ek g s il = |

[+ 3 1 Cancal

Figure 4

<
-ﬂr\ Sesnn), Procesaing f Exia e}, o} Wamng [Cricel 'Wamng | Evor | Sicprossed d

B Vo106 | ® 1

Fur Ao, peesi F1

Figure 5

4 Compiling for the FPGA

The supplied project can be compiled and downloaded to the
board, although it does not do much. First, make sure all
the source files are included in the project. From the Project
navigator window, click on the Files tab and then click to
expand Device Design Files. The tool will display the VHDL
filesthat will be compiled into the FPGA. To add afile, select
Project—+Add/Remove Filesin Project. This opens the window
in Figure 4.

Select all the VHDL files from the pop up window. If you
have written multiple VHDL files, add each of them. Do not
add any test benches (used for smulation) to the list of device
design files since they cannot be compiled into hardware.

Now we are ready to compile. Select Processing—+Start Com-
pilation to start the compilation process (Figure 5). The window
on the | eft reports progress.

A pop-up appears when compilation completes. If there are
errors, use the Messages window to locate them (Figure 6). As
usual, the first error listed is most trustworthy; any others maybe
due to earlier errors. A compilation process usualy generates
many, many warnings. These can generally be ignored.

Double clicking on an error message will highlight the sus-
pect VHDL in the editor window. The compiler may also dis-

Tivar , Capprend |

Locele

B

Lo L (SR |

Figure 7

play warning messages, which can be explored in the same way.
Y ou can obtain more information about a specific error or warn-
ing by selecting it and pressing the F1 key.

4.1 Programming the FPGA

Once your design has been compiled, it can be downloaded
to configure the FPGA. Sdect Tools—+Programmer, which will
display the window in Figure 7. It should list the DE2_TOP.sof
file to be programmed into the EP2C3 5F672 device (Alterd's
charming name for the FPGA on the DE2).

You may have to click on the “Hardware Setup...” button and
select the USB-Blaster cable.

Click the check box under Program/Configure for the
DE2 TOP. sof file destined for the FPGA and then click Sart to
download your design to the FPGA. If al goes well, the design
should spring to life.

5 Editing VHDL

The next step isto code your circuit in VHDL. Quartus provides
a good VHDL text editor, which provides syntax highlighting,
language templates, and other aspects of a good IDE. To
create anew VHDL filein your project, select File—+New. This
will bring up the dialog in Figure 8.

Sdlect the VHDL file option and click OK. This brings up a

Device Desig Files | Sofwars Files | Cther Files |

AHOL File

Elock Diagram/Schemasc File
EDWF File

SOPC Builder System

\"lnlot HCLL Fila

Cancel

=]

Figure 8: Creating anew VHDL file

<. Cuartus # - F1/laB/DE2_TOR - DEI_TO

|1 e At ew Fromct Amorments Froomsrg Took wWrekw L

X
Templete ==cion o I

AHLL ArchiEcture Baty -
Cuattus 1 Tol Cace Staement
Tel

«
e HOL Campanect katarisicn Sisamant
Elib Cancunen Frocedure Call

Cancums Signal Assignmert Staternent

Condifianel Signel Assigrement

Canstani Deierstion

Entity Declanation

For Sietemert

Ful Deesign: Caumer

Ful Design: Figlop

Ful Dasign: Tri-Stat Buler

Gnnmrete Sialement (For Ganernte)

Cienarsta Stmkamen if Gansreis)

i Sr=amert

Litrary Cleuse

Charall Stuctue

Insert Template

Show myme: ot

cancel |

Proview:

[emroiEnT __ccmpenent_name =
GENERTE
C

pACamatar mims @ sering = _ default valus;
_paramstar_name 1 integer 1% _ default_wvalue
1;
ECRT
4
__input_nama, __input_namo : IN

__bidir_naws, _ bidir_name INOUT F¥D_LOFIC)
__oukput_nane, _ output_nsme : avr awn tosTe

a¥0_LOSIC;

[Dwaj@ i me oD Bl 2L IR Figure 10: Inserting aVHDL template
| Froect Peragater EE, " =R
[Tibrary rEEE; &
& o LI o use TEEE.570_LOGIC_1164.a11:
T T 4 use TEEE.E70_LOGIC RATTH.all;

= uze IEBE.§T0_LOGIC_UNSICHED.all:

L

- entity ton_sdder iz

poEt |
clk : in atd_legics
bemer_n oin acd logic: Y

- J
| N Ieftleds :onnt std_lngic_vertar If dmunta T3 o
] = elghtleds @ out 3td_logle wector (6 downto [L
B b
T 2 | E end pam_adder: E
[[daculs [P st - +

- architecture inp of rom_sddec irf v '
| " Wrrkin |D|n:' u
31 Ly owe Freereceas | | = g
.%',thmﬁ_ Proceasiig j Ea oy W [wwamisg & Cilce vesmig | EXOF f Suppeaiad | *
| vezaee | ¥l e

nik a3z (6 W E e

ot presm e

Figure 9: Editing aVHDL file

window where you can enter VHDL code (Figure 9).

The verbose syntax of VHDL is probably unfamiliar to you.
To help, the Quartus tool provides a collection of VHDL tem-
plates, which provide examples of various types of VHDL con-
structs, such as an entity declaration, a process statement, and
an assignment statement.

To use a VHDL template, select Edit—+Insert Template. This
will open awindow such as Figure 10.

Select “VHDL” and the type of template you want. The OK
button inserts the template in the active sourcefile. Then fill in
the details in the template, such as the name of an entity.

5.1 The RTL Viewer

We are designing a circuit but have been writing textual VHDL.
Quartus includes an RTL viewer that digplays your design as a
schematic. Bring this up by selecting Tools—+RTL Viewer (Fig-
ure 11). Note that this is merely informative and not a necessary
part of the compilation process.

6 TheLab 1 Design

Your goa for this lab is to implement a memory dis
play/modification circuit whose block diagramis shownin Fig-
ure 12. Input ports are on the left of this diagram; output ports
are on theright.

To put the labl component into the project, you need to in-
stantiate it in the top-level architecture in DE2_TOP.vhd. You
need to do two things. declare its interface as a component and

e
+ R
Prmitw
®Piu |
i " ' »

B R T CusMILES §FITL 'y, TROPsRoy e o0t A S Pl W Bt P IS DCRs 1 S BLCoathl 1 TS Dwiringy

|+
;%E o J, Processing f{ BB IND | G deriad J COCAIWETNG f S0e B gYaRREac ||
| Hpiez e T 15EG e| #|f

For b pres Ry

. . Figure 11
instantiate it.

The component declaration and port map must appear in the
declarations of the architecture section of DE2_TOP.vhd:

architecture datapath of DE2_TOP is

conponent labl is

port (
clock : in std_logic
resetn : in std_logic
key : in std_logic_vector(3 downto 0);
hex6 : out std_|logi c_vector (6 downto 0);
hex5 : out std_|logic_vector (6 downto 0O)
hex4 : out std_logic_vector (6 downto 0)

endconponent ;

begi n
Ul: |abl port map
(

cl ock => cl ock_50,
resetn => sw(0),

key => key,
hex6 => hex6

hex5 => hex5

hex4 => hex4

DB

end dat apat h;

Here, the module ports from labl are mapped to top level
ports. The naming of these top level ports, such as CLOCK_50,
SW, KEY and HEX®6 4, are all defined in the Quartus .gsf file.
The ports named inthe DE2 _TOP.vhd and QSF file must match.

Remember to disable the constant assignments to HEX4,
HEX5, and HEX6 in the DE2_TOP.vhd file when you add your

labl component.

6.1 RAM

Your design should include a 16 X 8 bit RAM, but what kind
of RAM? The DE2 board contains an SRAM chip, an SDRAM
chip, and RAM interna to the FPGA itself. The SDRAM chip
provides the highest capacity but requires a very complicated
controller. The SRAM chip is smaller, much smpler to use, and
provides more storage than RAM on the FPGA. However, RAM
internal to the FPGA, so-called “block RAM,” is the easiest to
use (and the fastest). We will useit for thislab.

LED
» —
e hes6 downita 0]

LED
— »
Encode hews{E downto 0
LED
—
Ecois hexd{G downto 0]

ADDR

keyl3) . Address
) = Control

clic
resat 3 RAM

o gy]
kel ———= Contrd —————»

f

¥

DATA

Figure 12: The block diagram of lab 1

hex{0}
hex(5} hex(1}
hax{6)
hex(4} hex{2)
e @ NA

Figure 13: A seven-segment LED display

The FPGA block RAM can be configured many different
ways, e.g., as one big memory, as many small regions, and as
bits, bytes, or words. The easiest way to ask for a particular
type of RAM is to alow the Quartus tool to infer it from the
use of an array in VHDL. Below is code from which Quartus will
infer asmall RAM block.

library ieee;
use ieee. std_|logic_1164. all;
use ieee. std_|logic_unsigned. all;

entity raminfr is

port (
cl k ins d | ogi
we @ in st ogi ¢
a: in std I og [vector(3 downto 0);
di : in std_lo Ji c_vector(7 downto 0);
do : out std_logic vector(7 dowto 0)
endram nfr;

architecture rtl of ramnfr is

type ramtype is array (16 downto 0) of
std_logi c_vector (7 downto 0O);

signal RAM: ramtype;
signal read_a : std_logic_vector(3 downto 0);
begi n
process (clk)
begi n
|f (clkevent and clk ='1") then
if (we ="1") then
RAMconv_integer(a)) <=di;
end if;

read_a <= a;
end if;

end process;
do <= RAMconv_i nteger(read_a));

end rtl;

Here, the conv _integer function converts aninput in the form
std_logic_vector to an integer index for accessing the array.

6.2 Seven-Segment LEDs

The block diagram in Figure 12 includes three seven-segment
LED output decoders. Each segment of each LED is connected
to apin on the FPGA. Driving a pin low (to 0) lights the cor-

responding segment. Figure 13 shows how the segments are
arranged. Thus, to display a“1,” drive the port to “1111001.”

7 VHDL Simulation

Hardware is usualy much harder to design than software for a
variety of reasons. One is that that usual edit-compile-debug
cycle is longer because it takes longer to compile hardware. An-
other reason is that the behavior of hardware is harder to ob-
serve. It is difficult to put a print statement in hardware.* It is
even harder to probe awire inside a chip.

One way out of this conundrum is to smulate VHDL before
compiling it onto the FPGA. This is fagter than compilation and
makes it easy to observe everything going on indde your design,
but it is much, much slower the running the actual hardware.

7.1 Testbenches and the Synthesizable Subset

There is actually two versions of VHDL: the complete language,
which the smulator accepts; and the synthesizable subset—the
part of the language that can be trandated into hardware. The
non-synthesizable part of the language is mostly useful for writ-
ing testbenches. Note that traditiona programming languages
such as C or Java do not have the notion of a subset.

Y ou need two things to run an interesting simulation of a sys-
tem: a description of the system itself and some input for it.
This latter component is known as a testbench and you need to
write additional VHDL for it when you smulate a design. A
testbench ingtantiates the desing you are testing, stimulates the
design, eg., by applying clocks and inputs, and monitors its re-
sponse. Think of a test bench as a virtual signal generator and
oscilloscope.

A testbench can use non-synthesizable VHDL statements.
The wait statement, which can delay a precise amount of time,
is typicd. It is not possible to build hardware that does this (d-
though you can build something that delays a precise number of
clock cycles), but the smulator can easily handle this. For ex-
ample, wait can be used to provide a reset signa that goes low
for 200 ns:

process

begi n
resetn <= '0";
wait for 200 ns;
resetn <= ’1’,
wait;

end process;

The final wait stops the process so it does not automatically
repeat and generate multiple resets.

Wait is also useful for modeling clocks. Here is away to
generate a clock with a 40 ns period.

process
begi n
clock <= '0";
wait for 20 ns;

| oop
clock <= "1
wait for 20 ns;
clock <="'0";
wait for 20 ns;
end | oop;
end process;

The loop statement tells the simulation to generate clock
pulses forever.

Wait can also be used to separate assignment statements to
generate specific input stimulus.

process

begi n

wait for 100 ns;
a<= '0;

b <= "0,
cin<="'0";
wait for 20 ns
a<='1;

b <= 0’ ;
cin <= '0";
wait for 20 ns;
a<='1;

b <= '0;
cin <= '1";
wait ;

end process;

You can test thislab by using this style of code to emulate
buttons being pressed.

7.2 Simulating your design

Quartus can run an external VHDL simulator. We suggest a
verson of Mentor Graphics's ModdSm It is a hasde to run the
simulator the first time, but it is much easier the second.

First, you probably need to tell Quartus where the
simulator is. Go to Tools—+Options, select “EDA

Tool Options,” double-click on the ModelSim-Altera
line and enter the name of the directory in which the
“vaim” executable resides. On our machines, thisis c:/ateral/6.
1/modelsim_ae/win32aloeny.

Now, tell Quartus that you want to use ModelSim-Altera
as the “EDA simulator.” With the project open, select
Assgnments—+EDA tool settings and click on “Simulation.” Set
“Tool name” to “ModelSim-Altera.”

The Assignments—+EDA tool settings dialog is also where
you must tell the simulator which testbench to use. Again un-
der EDA Tool Settings—+Simulation, specify a testbench in the
“NativeLink settings’ area by selecting “Compile test bench”
and clicking on Test Benches.

In the Test Benches dialog, click New to create a new test
bench. The name is arbitrary, but the entity name must match
that in your VHDL test bench file and the instance should be the
name of the instance of the design you are testing. Y ou must
also specify an execution time for your testbench. This may be
a number of ps. Finally, add the VHDL file for your testbench
by selecting it and clicking “Add.” Figure 14 illustrates this.

Once you have created a new test bench, you can select it in
the pulldown menu to the right of “Compile test bench.” Fig-
ure 15 illustrates all of these settings.

Findly, you should be able to sdect Tools—+EDA Simulation

Tool—+Run EDA RTL Simulation to start Model Sim.

If dl goes well, you should see the Model Sim window appear
and a waveform viewer display the results of the simulation:
Figure 16. Use the zoom tools to zoom in and out on this display
and the scrollbars to move. By default, the display will show all
the signals external to the unit under test (i.e., on the entity in
your VHDL test bench file you specified earlier).

bl Mew Test BEench Settings "

Crmale e bmst berch sellings.

Tnstbanch s [My 1esiberch
Test bench et [l

Instanc= [UUT

Bk [0 [S
ferme | [

Fila name | Type
Iab1_th.vhd WYHOL Fie
4 |

[118 I Cancel)
Figure 14: Telling Quartus about a new test bench

flow 1001 Detn & a1 | e Vi bl g o TS

Semegs - DEZ_TOF

R Figure 16

ok e [HiccaEn fdmnn |
T Rug gateiesd sneitation sutnwsboshy b conglation
Dsign E i Eanitvsis
Swradsbon
Anakic — .. ——
Farralwdfcain Fownat or oot et [LHLL £
Freimalimbas: Chtpad goactonr. [smorvreothin =l
Bowsd-Luvul

5 S Synibari Setings T M gD chassctens. T Erablegichbaing.

Logionaket Weezae
B St
FonwsPay Frmes vt Sekngs

CSownorghubes: [|

Bet |

o | e |
o

Figure 15: Seleting Model Sim-Altera as the simulator and
telling it about a testbench

