Lab 3 Introduction to SOPC

Abstract

Use Quartus and SOPC builder to create a bouncing video ball
hardware/software design.

1 Introduction

This lab is about combining your own hardware and software
components. Again, you will be implementing a “canned” design
that we started for you: a bouncing video ball in which software
controls the trgectory of a square on the screen displayed by
custom video hardware.

First, follow the instructions in Section 2 to gain some
practice building a smple sysem usng SOPC Builder. Then,
design the three project described in Sections 3.

2 Building a Nios |1 System with SOPC Builder

SOPC Builder is an Altera-supplied program for quickly as-
sembling Nios Il-based processor systems. It effectively writes
VHDL for you.

The tutorial below explains how to make a smple LED display
using SOPC Builder. Go though this tutorid first to see how the
toolswork, then start working on the design.

2.1 Quartus, part 1

Create anew directory (e.g., “1ab3"), cdinto it, and start quartus.

Select File—+New Project Wizard.

In the new project wizard dialog, select the directory (e.g.,
“lab3") you just created. Name the project something like
“lab3.” The two names do not have to match, but only use let-
ters, digits, and underscoresin the project name. See Figure 1.

Don't add any files to the project yet.

For the device, select the “Cyclone 11" family and the
“EP2C35F672C6" chip. See Figure 2.

Click “Finish” to create the project.

2.2 SOPC Builder

Inside Quartus, select Tools—+SOPC Builder. This will probably
ask you to start creating an SOPC builder system (if not, select
File—+New System). Name it differently than the project, eg.,
“nios_system,” and select VHDL asthe language. See Figure 3.

Y ou should now be at the SOPC Builder main window (Figure
4). Make sure the Device Family is set to Cyclone Il and

% __New Project Wizard: Directory, Name, Top-Level Entity [page 1 of 5] '

What iz the working directary for this project ?
|thms#sedwadsfcvs#classash?ﬂﬂ?f&&#ﬂ#lah? _]

What is the name of this project?

flat:d Jim |

What is the name of the top-level design entity for this progect? This name i case sensitive and must
awactly match the entity name in the design file,

EE [

Llza Existing Progect Settings I

<Back | Frh | Cancel |

4

Next » |

Figure 1: Naming a new Quartus project

New Project Wizard: Family & Device Settings [page 3 of 5]

Select the famdy and device you want to larget for compdation
Show in Avalable device! ist

Earmily; [Cyctone I F N Bk [y =
Target device 5 m
(" fulo device selasted by the Fiter HaA £
% Speciic device selactad in ‘Avadable devices' kst Speed grade: IA“}' ’]

Core volage: 1.2V
¥ Show advanced devices
[T Har aralililegr

Available devices:

N ame | LEs | Mernor.. | Embed ., | PLL | 4|
EP2C20F 48418 18752 239616 52 4

EP2C200240C8 18752 233616 52 4

EP2C35F484CH 3[BN6 483840 70 4

EP2CI5F484CT 3316 483840 70 4

EP2C35F484CE 33216 483840 70 4 o
EP2CI5F48418 33116 483840 70 4

EPRC35FE7206 33016 483840 70 4

EP2C3EFET2CT 33216 483840 70 4

EP2CISFE72C8 33216 483840 70 4 =
ELICIRECTHO rIne ADI0AN " A

LLCIT AT it +

el | =

F i b L M | deyine regon

< Back HW’_I

Fissh | Cancel

Figure 2: Selecting the device in Quartus

Create Mew System

System Name: nios_system

Target HDL
C Verilog @® YHOL
Cancel oK

Figure 3: Naming a new system in SOPC Builder

Alera Nios I« cpu_0

Core Mias Tl | Caches & Tightly Coupled Memories | Advanced Fearures | JTAG Debug Madube | Custam Instuctions |

Selert o Mas | oore:

@ Nios Il /e CNios Il/s

- RISC RISC

NIDS I 32-hit 32-kat

uide Instruction Cache

Branch Pradiction

Hardware Multiply

[oNios lIjt I

Hardware Divide 1

Barrel Shifter

Data Cache

Dynamic Branch Prediction
Performance at 50 MHz Up 1o & DMIPS Up to 25 DMIPS Up:to51 OMIPS
Lesie Usage B00- 7000 LEs 1200-1400 LEs 14001800 LEs
Memary Lsage Two Mdks Two Maks + cache Three MAKs + cache

fi e ded Multipliers [CTHirdwa i

|rv;¢.- prian

=
Imerfaces and Periphierals
Lgary Comanests

B Capp et s

e

mary
[
WecrErenis
[

Fel

Peymeratn

U imertases

[B compasars

Figure 4: The SOPC Builder main window. Available compo-
nents are listed on the left.

that there is a single external 50 MHz clock listed. “Unspecified
Board” is correct.

Add the processor by opening Avalon Components and
double-clicking “Nios |l Processor—Altera Corporation.” This
should bring up the Nios Il dialog in Figure 5. Select the
Nios I/e, the smallest of the three and click “Finish.” You don’t
need to adjust the other parameters.

At this point (Figure 6), you have a single processor with a
JTAG debug module connected to it. By itsdlf, this is useless
because it has no memory.

We will use the off-chip 512K SRAM by creating a new com-
ponent (peripheral) that does the nearly-trivial trandation from
the protocol spoken by the Avalon bus (i.e., that is connected to
the Nios I1) to that for the SRAM.

First, you need a VHDL file for the component called
de2_sram_controller.vhd. Its contents are shown in Figure 7.

This does amogt nothing: it connects and inverts the various
Avalon signals (named avs sl ...) for the SRAM chip and con-
trols the tri-state output drivers by indicating the SRAM_DQ bus
should only be driven when the Avalon write sSignd is asserted.

Create a new SOPC Builder component by selecting File—
+New Component. Under HDL Files, sdect this .vhd file. Once
the filename stops flashing green (it is being checked), the dialog
should indicate “de2_sram controller” is the top-level module
(Figure 8).

Figure 6: The system with only the Nios || processor

Under the “Signals’ tab, make sure all the “SRAM” sig-
nals are connected to the “globa_signals’ interface (otherwise,
SOPC builder assumes you have two bus connections on the
component). See Figure 9.

Under the “Interfaces’ tab, click “Remove Interfaces with No
Signals.” This should leave just the “s1” interface. Turn off
“Can receive stderr/stdout” for the “sl” interface (since it is not
a communication port—it is a memory). Note that at this point
you can set the speed and other parameters of the bus interface
for the component. In this case the defaults—one cycle each for
read and write—are what we want.

“Slave addressing” is an important choice. The “Memory”
setting indicates that the bus will be dynamically resized to acco-
modate the data width of the peripheral—exactly what we want
for the SRAM component. The “Regigter” setting disables this:
the bus always appears as 32 hits wide and the periphera is ex-
pected to align its data on 32 bit boundaries.

Finaly, under the “Component Wizard” tab, set the Compo-
nent Group to “User Logic” and click “Finish.”

You should now have de2_sram controller under Avalon
Components/User Logic on thelist on the lft.

Double-click it to add it to the system and right-click on its
module name to rename it “sram.” Congratulations: your pro-
cessor system now has some memory and could actually run

library
use | EEE. std_logic_1164.all;

entity de2_sran_controller is
port (
signal avs_si_clKk,

avs_s1_chi psel ect,
avs_sl wite,

avs_sl read : in std_|logic;

signal avs_sl address in std logic vector(17 dowto 0);
signal avs_sl _readdata : out std logic_vector(15 downto 0);
signal avs_sl_witedata : in std |ogic_vector(15 dowto 0O);
signal avs_sl byteenable : in std | ogic vector(1l dowto 0);
signal SRAMDQ : inout std |ogic_vector(15 dowto 0);
signal SRAMADDR : out std |ogic_vector(17 dowto 0);
signal SRAMWB N

SRAM B N

SRAM VEE N

SRAM CE_N

SRAM OE N : out std_logic

)

end de2_sram controller;
architecture datapath of de2 sramcontroller is
begi n

FAMDQ <= avs_s1 witedata when avs_sl wite ='1 else
(others =>'27");

avs_sl readdata <= SRAM DQ

SRAM ADDR <= avs_sl_address;

SFAMWB N <= not avs_sl byteenabl e(l);

SFAMLIB N <= not avs_sl byteenabl e(0);

SRAM VE_N <= not avs_sl wite;

SRAM CE N <= not avs_sl chi psel ect;

SRAM CE_N <= not avs_sl1_read;

end dat apat h;

Figure 7: de2_sram_controller.vhd: VHDL source for the
SRAM controller (inverters and atristate buffer).

programs.

Note that if you later change the VHDL code for your com-
ponent (e.g., during the development process), you must re-edit
the component by right-clicking the component on the left menu
and sdlecting “Edit.” After this, the system will instruct you to
remove and re-add every ingtance of the component in your sys-
tem.

Using the same procedure, create a new component caled
“led_flasher.” The VHDL for this is shown in Figure 11.
Again, remember to change the interface of the “leds’ signal
to global_signals and remove interfaces with no signals.

Add an instance of your new “led_flasher” component to the
system and rename it to “leds’ (instead of led flasher 0).

For debugging output, add Avalon Compo-
nents/Communication/JTAG UART. Just click “Finish” to
accept the default parameters.

Run Sysem—+Auto-Assign Base Addresses to locate each
component in memory. The completed system configuration is
shown in Figure 13.

Click on the “More “cpu_0" Settings’ tab. Make sure the
Reset Address and Exception Address functions are mapped to
the “sram” memory module, not the “leds’ module, which is not
memory.

Finally, click on the “System Generation” tab, disable “Simu-
lation. Create simulator project files,” (simulation with the DE2

3

does not work well without models for the various off-chip pe-

Component Editor - ded_sram_controller == %
File Templates
Introductlon| HDL Filas |Signals| Interfaces | SWFiIesl Compeneant Wizard

b About HDL Files

[Infe [Synth... [Simul... |
¥k, 2007.02,05.10:05:05 [1 I

[File Fame

2 &rom_cortroger vl

HDL Files:

Add HDLFile... | [Add Synthesis File.. | [Famove

Top Level Medule (de2_sram _controller,vhd: [

| avalon_slave_0: Slave must have clk signal to specify riming in eycles.
Tl avalon_slave_0: Slave must have a read or write interface, or suppart interrupts.

< Prev | [lext = I| Finish, .. |

Figure 8: Selecting top-level VHDL file for new component

Component Edjlor - de2_sram_controller
File Templates

I] 7 ¥ i 1 -
Introducrion| HDL Files| Signals .Interfacesl ey Files| Component Wl'zard!

—
I Abcut Signals =
[Mame [Intarface Signal Type [Width Ditection
=] ik | rired
] chipesiact il npad
=1 wrte i Irpd
&1 read i it
= ediess e el
51 readdain " cuinih
=1 wieddta G Wicad
gt Eyteanabiie: i friput
\ghobal_sigrals peit i o
ghabal_sigrals exprnt D gL
(ghabal_sigmals =xport | ol |
epabal_sirals expoat h i
:wbl_uq'uis ot 1 oltp
diabal_sigrals expert i ot |
e — o
T avalon Slave 0 Inaiace] -
favalon_slave_0
new avalon slave...
new avalon_tristate sfg [
new avalon master... _| finish.. |

~_ ComponeniEditor-de2, sram_contoller
File Templares

Intreduction | HOL Files Signals | Interfaces |SW Fi!esi Component Wizard

b About Interfaces

wavalon slave "s1" (lof 1)

Mame: (sl

=

Type: |avalon slave

= Avalan Slave Settings
Slave addressing: Memory [use dynamic bus iz, :
Minimum Arbitration Shar |1
Can receive stderr/stdout o '_v‘:
Interleave Bursts; (Mo [+]

= Avalan Slave Timing

. = Rezdl Wain [T Pl U T _l_
Setup: |0 i: nits: [cycles | w
Pl Write Wait: |1 §) I
E
| Add Interface | | lanove Interfaces With Mo Sigpials [
P Component ‘de2_sram _controller” s ok.
< Prov hlext > [Einish... |

Figure 10: Configuring the Avalon bus interfaces for the com-
ponent

library

use | EEE.std_logic_1164. all; use
use |EEE. std logic_arith.all;
use | EEE. std_| ogi c_unsigned.all;
entity led_flasher is
port (
signal avs_sl_clKk,
avs_sl reset _n,
avs_sl read,
avs_sl wite,
avs_sl chipselect : in std_|ogic;
signal avs_sl_address
: instd_logic_vector(4 dowto 0);
signal avs_sl_readdata
: out std logic_vector(15 downto 0);
signal avs_sl witedat a
in std_|logic_vector(15 downto 0);
signal leds : out std |ogic_vector(15 downto 0)
)

end | ed_flasher;
architecture rtl of led flasher is

signal clk, reset_n : std_logic;
type ramtype is array(15 downto 0)
of std_l ogic_vector (15 downto 0);

signal RAM: ramtype;
signal ram address, display_address
std_l ogi c_vector(3 downto 0);
signal counter_delay : std |ogic_vector(15 downto 0);
signal counter : std_logic vector(31 downto 0);

begi n

clk <= avs_s1_cl k;
reset_n <= avs_sl_reset_n;
ram address <= avs_sl_address(3 downto 0);

process (clk)
begi n
if clkevent and clk ='1" then
if reset_n ="0" then
avs_sl readdata <= (others =>
display _address <= (others =>
counter <= (others =>"'0");
counter_delay <= (others =>"'1');
el se
if avs_sl_chi psel ect
if avs_sl1 address(4) =
if avs_sl read ="'1’
avs_sl readdata <=
RAM conv_i nt eger (ram address));
elsif avs_sl wite = '1" then
RAM conv_i nt eger (ramaddress)) <=
avs_sl witedata;

='1 then
"0’ then
t hen

end if;
el se
if avs_sl1l wite ='1" then
counter_delay <= avs_sl witedata;
end if;
end if;
el se

| eds <= RAM conv_i nt eger (di spl ay_address));

if counter = x 00000000 then
counter <= counter_delay & x 0000 ;
di spl ay_address <= displ ay_address + 1;

el se
counter <= counterl,;

end if;

end if;
end if;
end if;

end process;

end rtl;

Figure 11: led_flasher.vhd: VHDL source for the LED flash
controller. This memory-maps a 16 x1 6 RAM into 16 halfwords
and a single “delay” register into another 16. When the RAM
is not being written, a counter steps through the contents of the

ITAG LART - jlag_sar_o
Canfiguraticn | Simulatian
Wita FI70 [data from Avilcn t [TAC 3

Jepch: [34 [IR0 Thieshald: z

] Canstruct using registers insiead of memory bocks

Paad FIF [data from JTAG 1o &vlon)

Jepth; [74[=] 1R Threshakd:

] Construer using ragitars inswed of memery bocks

Cancsl

'E

Firish

Figure 12: Adding aJTAG UART

Alizta SOPC Bullder « nios_system
File Medule System View Tools Help
Systam Conpants ,': Mare "cpu_D* Sertings Nios [l [System Ceneration
Tl e = _A"" = =
Interfaces and Perphers — Targat —_—
Legacy Conmporeits Cleck
Math Copracessars Board: |Unspecified Board]:| T
Memory — [
iy e i I Device Famihy: (Cyelens || [[T
Micratranix i o
Other
Pariphsrals Use Modula k... |Description Ilnput ¢ jsas-e End [i+]
VU-I.I Logic I Eepu_d hios | Frocessa - ol
el _pram_coerolie i .
@ el Tiashar I e R
b @ = dubn_mastar Mester pord RO D Q3
[r ‘aHB Components iy Rmg st . Siave part 0 BRI, (1 DOBEDTFF
Gl 7] = sram deZ_stam _correlisr W0 DBOG00) 0 DT
—='- [l leds Jeul_Bastal EOOIEOT0N, 0 DODSIEF
All Aailable Somponants |W Fan_uart 0 JTAG LART elk
o @ w0
idu | .?.c.l'f.ck | = Movelp w Iove Diown
([epu_D; defailting Reset Address, Excaption Addiess 1o leds
cpu_t The resat address points to wolatile memony, Execution of undefined code may occur upon reset.
Exlt | Fre | | Mext > Generate

Figure 13: The final configuration of the system

ripherals) and click “Generate.” This should fill your project
directory with many .vhd files.

When system generation compl etes (this takes awhile), click
on Exit and return to the Quartus 11 GUI.

2.3 Quartus, part 2

Once SOPC Builder has generated the system, we need to im-
port it into a Quartus 11 project.

First, you need to create a top-level VHDL file that instan-
tiates the Nios Il system that was just generated and whatever
hardware you want to connect to it. In this case, we only need
to wire the Nios |l to the external clock and connect the SRAM
and LEDsto their pins.

The nios_system entity was generated by the SOPC Builder
and is defined in nios _system.vhd (along with a lot of other
things). As usual, its component definition is essentially just
the ports on the entity, which were named by SOPC Builder.

Figure 14 shows the top-level VHDL file. Put this in the
project directory.

Add all the generated VHDL files to the Quartus project. Se-
lect Project—+Add/Remove Files in Project and select al the
.vhd files in the project directory. This is most easily done by
clicking “Add All” and then removing the non-VHDL files. The
“altera_europa_support.vhd” fileisalso not necessary.

By default, the name of the top-level entity is the name of
the project. You can use Project—+Set as Top-Leve Entity to
change this.

RAM, displaying it on the LEDs. The delay register sets the 4

hold time for each address.

library

use | EEE std_|l ogic_1164.all;
use | EEE std_logic_arith. aII
use | EEE std | ogi c_unsigned. al | ;

entity lab3 is

port (
signal CLOCK 50 : in std_l ogic;
signal LEDR: out std_logic_vector(17 dowto 0);

SFAMDQ : inout stdlogic vector(15 dowito O0);
SFAMADCR : out std logic vector(1l7 dowito O0);
SRAM UB_N, SRAM LE_N, SRAM WE_N,

SRAM CE_ N, SRAM CE_ N : out std_|logic

)
end | ab3;
architecture rtl of lab3 is

conponent ni 0S_systemi s
port (

signal clk :in std_l ogic;

signal reset_n

signal leds_fromthe |eds
: out std |ogic vector(15 dowito 0);

signal SRAM ADDR fromthe_sram

:in std_logic;

out std logic vector (17 dowto 0);
signal SRAMCE N fromthe sram : out std|ogic;

signal SRAM DQ to_and fromthe_sram
: inout std_|ogic vector (15 downto 0);
signal SRAMLB N fromthe_sram: out std | ogic;
signal SRAMCE N fromthe_sram: out std_|ogic;
signal SRAMUB N fromthe_sram: out std_|ogic;
signal SRAMVE N fromthe_sram: out std | ogic
)i

end conponent;

signal counter : std_|logic_vector(15 dowto 0);
signal reset_n : std_logic;

begi n

LEDR(17) <='1";
LHER16) <='1';
process (CLOCK 50)
begi n

1f CLOCK 50" event and CLOCK 50 = '1' then
if counter = x ffff then
reset_n <="'1";
el se
reset_n <="'0";
counter <= counter + 1;
end if;
end if;
end process;

nios : nios_systemport nmap (

cl k => CLOCK_50,
reset_n => reset _n,
| eds_fromthe_| eds
SRAM ADDR from the_sram => SRAM ADDR,
SRAM CE N fromthe_sr am => SRAMCE N
SRAMDQ to_and_fromthe_sram=> SRAMDQ
SRAM LB N fromthe sr am => SRAM LB N
SRAM OE_N from the_sram => SRAM CE N,
SRAM UB_N fromthe sram => SRAM UB N
SRAMWE_N fromthe_sram => SRAMVE N

)

end rtl;

Fiqure 14: |ab3.vhd: The top-level entity

=> LER 15 downto 0),

| " T Timing Al T
!
e Dekiva [e =]
Mg s b s o ot e chocks Reskigpeiot 200N re
Hete o

Check o il . et I g reauiveris. sienerd vl b
(e [=
I~ ek} —
I tgofciock b oo dekeyt [-
I (P P Dt |

Bk s Canal <Rk Hcds Carcal

Figure 15: Imposing a global timing constraint

Match the pin names to locations by selecting Assignments—

+Import Assignments and choosing the
DE2 pin_assignments.csv file.

Impose a global timing constraint by choosing Assignments—
+Classic Timing Analyzer Wizard.

Select an overall default frequency requirement, then set De-
fault fmax to 50 MHz (Figure 15). Leave the defaults alone on
the next window, then click Finish.

Compile the project and download it to the board. Congratu-
lations! You just built acomputer.

2.4 NiosllIDE

Next, create a new software project for your new computer system.
Since each system is different (e.g., different memory layout,
different peripherals), the software istied to the system.

Run nios2-ide and switch the workspace to your project di-
rectory.

Select File—+New—+Nios || C/C++ Application.

Name the new (software) project something like
lab3_software (this is arbitrary—it creates a directory with this
name in your project directory).

Select the “nios_system.ptf” file in your project directory as
the SOPC Builder System. This should set the CPU to “cpu_0.”

Finally, select the “Hello World” template and click Finish.

At this point, you can build and run the project on your board, but
it does not do much. Ingtead, replace “hello_world.c’ in the
lab3_software directory (i.e., the name of the software project
you specified) with the code in Figure 16, which exercises the
LED flasher peripheral we added earlier.

3. Bouncing Video Ball

After you implement this project, you will feel a much stronger
connection with Nolan Bushnell, the inventor of the first
commercially-successful videogame, Pong. Of course, you
won't find it quite as lucrative.

You have two things to design: an Avalon component that
displays a small white rectangle on the screen under software
control, and a C program that controls the position of this rect-
angle.

Usethecodein video display.vhd as a tarting point for your
Avalon component. It isasimple VGA controller that displays
alarge white rectangle against a blue background. It currently
does not have a bus interface. Y ou need to add one and change its

#i ncl ude <io. h> . S .
#incl ude <syst em h> behavior so that it displays asmall rectangle. Y our main chalenge

ncl ude <stdio. h> isbuilding an Avalon periphera. Usethe LED flasher from the
tutorial as abasisfor building a peripheral.

#define | OMR LED DATA(base, of fset, data) \ First, get an Avalon peripheral working by building the regis-

| O/R 1600 RECT(base, (offset) * 2, data) ters you plan to use in the end for your video controller and connect
them to some LEDs to verify you can communicate from the
#defi ne | GRD_LED DATA(base, of fset)\ software to the hardware.

| ORD_16DI RECT(base, (offset) * 2)))) o
Once you have aworking peripheral, integrate your modified

#define | ONR_LED SPEED(base, data) \ video controller with it.
| ONR_16DI RECT(base + 32, 0, data)

int main()
int i;
printf("Hello M chael\n");
| OAR_LED_SPEED(LEDS_BASE, 0x0040) ;

for (i =0 ;i <8 ;i++) {
| O/R LED DATA(LEDS BASE, i, 3 << (i *
M-

)
printf("witing %\n", i);

for (i =8 ;i <16 ;i++) {
| OAR LED DATA(LEDS BASE, i, 3 << (32(i *
2

)
printf("witing %\n", i);
for (i =0 ;i <16 ;i++) {

printf("reading % = %\n", i, |1CGRD LED DATA(LEDS BASE,
i)):
}

}
printf("Qodbye
\n");

return O;

}
Figure 16: A hedlo world.c file that imitates KITT from
Knight Rider (yes, | lived through the 80s). It sets the
cycling speed, fills the LED_flasher periphera with a
pattern, then reads it back to verify it works as memory.

