
1

Lab 3 Introduction to SOPC

Abstract

Use Quartus and SOPC builder to create a bouncing video ball
hardware/software design.

1 Introduction

This lab is about combining your own hardware and software
components. Again, you will be implementing a “canned” design
that we started for you: a bouncing video ball in which software
controls the trajectory of a square on the screen displayed by
custom video hardware.

First, follow the instructions in Section 2 to gain some
practice building a simple system using SOPC Builder. Then,
design the three project described in Sections 3.

2 Building a Nios II System with SOPC Builder

SOPC Builder is an Altera-supplied program for quickly as-
sembling Nios II-based processor systems. It effectively writes
VHDL for you.

The tutorial below explains how to make a simple LED display
using SOPC Builder. Go though this tutorial first to see how the
tools work, then start working on the design.

2.1 Quartus, part 1

Create a new directory (e.g., “lab3”), cd into it, and start quartus.

Select File—+New Project Wizard.

In the new project wizard dialog, select the directory (e.g.,
“lab3”) you just created. Name the project something like
“lab3.” The two names do not have to match, but only use let-
ters, digits, and underscores in the project name. See Figure 1.

Don’t add any files to the project yet.

For the device, select the “Cyclone II” family and the
“EP2C35F672C6” chip. See Figure 2.

Click “Finish” to create the project.

2.2 SOPC Builder

Inside Quartus, select Tools—+SOPC Builder. This will probably
ask you to start creating an SOPC builder system (if not, select

File—+New System). Name it differently than the project, e.g.,
“nios_system,” and select VHDL as the language. See Figure 3.

You should now be at the SOPC Builder main window (Figure
4). Make sure the Device Family is set to Cyclone II and
Figure 1: Naming a new Quartus project

Figure 2: Selecting the device in Quartus



F
n

2

Figure 6: The system with only the Nios II processor

that there is a single external 50 MHz clock listed. “Unspecified
Board” is correct.

Add the processor by opening Avalon Components and
double-clicking “Nios II Processor—Altera Corporation.” This
should bring up the Nios II dialog in Figure 5. Select the
Nios II/e, the smallest of the three and click “Finish.” You don’t
need to adjust the other parameters.

At this point (Figure 6), you have a single processor with a
JTAG debug module connected to it. By itself, this is useless
because it has no memory.

We will use the off-chip 512K SRAM by creating a new com-
ponent (peripheral) that does the nearly-trivial translation from
the protocol spoken by the Avalon bus (i.e., that is connected to
the Nios II) to that for the SRAM.

First, you need a VHDL file for the component called
de2_sram_controller.vhd. Its contents are shown in Figure 7.

This does almost nothing: it connects and inverts the various
Avalon signals (named avs_s1_...) for the SRAM chip and con-
trols the tri-state output drivers by indicating the SRAM_DQ bus
should only be driven when the Avalon write signal is asserted.

Create a new SOPC Builder component by selecting File–
+New Component. Under HDL Files, select this .vhd file. Once
the filename stops flashing green (it is being checked), the dialog
should indicate “de2_sram_controller” is the top-level module
(Figure 8).

Under the “Signals” tab, make sure all the “SRAM” sig-
nals are connected to the “global_signals” interface (otherwise,
SOPC builder assumes you have two bus connections on the
component). See Figure 9.

Under the “Interfaces” tab, click “Remove Interfaces with No
Signals.” This should leave just the “s1” interface. Turn off
“Can receive stderr/stdout” for the “s1” interface (since it is not
a communication port—it is a memory). Note that at this point
you can set the speed and other parameters of the bus interface
for the component. In this case the defaults—one cycle each for
read and write—are what we want.

“Slave addressing” is an important choice. The “Memory”
setting indicates that the bus will be dynamically resized to acco-
modate the data width of the peripheral—exactly what we want
for the SRAM component. The “Register” setting disables this:
the bus always appears as 32 bits wide and the peripheral is ex-
pected to align its data on 32 bit boundaries.

Finally, under the “Component Wizard” tab, set the Compo-
nent Group to “User Logic” and click “Finish.”

You should now have de2_sram_controller under Avalon
Components/User Logic on the list on the left.

Double-click it to add it to the system and right-click on its
module name to rename it “sram.” Congratulations: your pro-
cessor system now has some memory and could actually run

igure 4: The SOPC Builder main window. Available compo-
ents are listed on the left.

Figure 3: Naming a new system in SOPC Builder

Figure 5: Adding an Nios II processor in SOPC Builder



3

library
use IEEE.std_logic_1164.all;

entity de2_sran_controller is

port (
signal avs_s1_clk,

avs_s1_chipselect,
avs_s1_write,
avs_s1_read : in std_logic;

signal avs_s1_address : in std_logic_vector(17 downto 0);
signal avs_sl_readdata : out std_logic_vector(15 downto 0);
signal avs_sl_writedata : in std_logic_vector(15 downto 0);
signal avs_s1_byteenable : in std_logic_vector(1 downto 0);

signal SRAM_DQ : inout std_logic_vector(15 downto 0);
signal SRAM_ADDR : out std_logic_vector(17 downto 0);
signal SRAM_UB_N,

SRAM_LB_N,
SRAM_WE_N,
SRAM_CE_N
,

SRAM_OE_N : out std_logic
);

end de2_sram_controller;

architecture datapath of de2_sram_controller is

begin

SRAM_DQ <= avs_s1_writedata when avs_s1_write = ’1’ else
(others => ’Z’);

avs_s1_readdata <= SRAM_DQ;
SRAM_ADDR <= avs_s1_address;
SRAM_UB_N <= not avs_s1_byteenable(1);
SRAM_LB_N <= not avs_s1_byteenable(0);
SRAM_WE_N <= not avs_s1_write;
SRAM_CE_N <= not avs_s1_chipselect;
SRAM_OE_N <= not avs_s1_read;

end datapath;

Figure 7: de2_sram_controller.vhd: VHDL source for the
SRAM controller (inverters and a tristate buffer).

programs.

Note that if you later change the VHDL code for your com-
ponent (e.g., during the development process), you must re-edit
the component by right-clicking the component on the left menu
and selecting “Edit.” After this, the system will instruct you to
remove and re-add every instance of the component in your sys-
tem.

Using the same procedure, create a new component called
“led_flasher.” The VHDL for this is shown in Figure 11.
Again, remember to change the interface of the “leds” signal
to global_signals and remove interfaces with no signals.

Add an instance of your new “led_flasher” component to the
system and rename it to “leds” (instead of led_flasher_0).

For debugging output, add Avalon Compo-
nents/Communication/JTAG UART. Just click “Finish” to
accept the default parameters.

Run System—+Auto-Assign Base Addresses to locate each
component in memory. The completed system configuration is
shown in Figure 13.

Click on the “More “cpu_0” Settings” tab. Make sure the
Reset Address and Exception Address functions are mapped to
the “sram” memory module, not the “leds” module, which is not
memory.

Finally, click on the “System Generation” tab, disable “Simu-
lation. Create simulator project files,” (simulation with the DE2

does not work well without models for the various off-chip pe-

Figure 8: Selecting top-level VHDL file for new component
------

Figure 10: Configuring the Avalon bus interfaces for the com-
ponent

Figure 9: Setting the interfaces for the signals



library
use IEEE.std_logic_1164. all; use
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity led_flasher is

port (
signal avs_s1_clk,

avs_s1_reset_n,
avs_s1_read,
avs_s1_write,
avs_s1_chipselect : in std_logic;

signal avs_s1_address
: in std_logic_vector(4 downto 0);

signal avs_s1_readdata
: out std_logic_vector(15 downto 0);

signal avs_s1_writedat a
: in std_logic_vector(15 downto 0);

signal leds : out std_logic_vector(15 downto 0)
);

end led_flasher;

architecture rtl of led_flasher is

signal clk, reset_n : std_logic;

type ram_type is array(15 downto 0)
of std_logic_vector(15 downto 0);

signal RAM : ram_type;
signal ram_address, display_address

: std_logic_vector(3 downto 0);
signal counter_delay : std_logic_vector(15 downto 0);
signal counter : std_logic_vector(31 downto 0);

begin

clk <= avs_s1_clk;
reset_n <= avs_s1_reset_n;
ram_address <= avs_s1_address(3 downto 0);

process (clk)
begin
if clk’event and clk = ’1’ then

if reset_n = ’0’ then
avs_s1_readdata <= (others => ’0’);
display_address <= (others => ’0’);
counter <= (others => ’0’);
counter_delay <= (others => ’1’);

else
if avs_s1_chipselect = ’1’ then
if avs_s1_address(4) = ’0’ then

if avs_s1_read = ’1’ then
avs_s1_readdata <=

RAM(conv_integer(ram_address));
elsif avs_s1_write = ’1’ then

RAM(conv_integer(ram_address)) <=
avs_s1_writedata;

end if;
else

if avs_s1_write = ’1’ then
counter_delay <= avs_s1_writedata;

end if;
end if;

else
leds <= RAM(conv_integer(display_address));
if counter = x 00000000 then

counter <= counter_delay & x 0000 ;
display_address <= display_address + 1;

else
counter <= counter1;

end if;
end if;

end if;
end if;

end process;

end rtl;

Figure 11: led_flasher.vhd: VHDL source for the LED flash
controller. This memory-maps a 16 ×1 6 RAM into 16 halfwords
and a single “delay” register into another 16. When the RAM
is not being written, a counter steps through the contents of the
RAM, displaying it on the LEDs. The delay register sets the
hold time for each address.

Figure 12: Adding a JTAG UART

Figure 13: The final configuration of the system

ripherals) and click “Generate.” This should fill your project
directory with many .vhd files.

When system generation completes (this takes a while), click
on Exit and return to the Quartus II GUI.

2.3 Quartus, part 2

Once SOPC Builder has generated the system, we need to im-
port it into a Quartus II project.

First, you need to create a top-level VHDL file that instan-
tiates the Nios II system that was just generated and whatever
hardware you want to connect to it. In this case, we only need
to wire the Nios II to the external clock and connect the SRAM
and LEDs to their pins.

The nios_system entity was generated by the SOPC Builder
and is defined in nios_system.vhd (along with a lot of other
things). As usual, its component definition is essentially just
the ports on the entity, which were named by SOPC Builder.

Figure 14 shows the top-level VHDL file. Put this in the
project directory.

Add all the generated VHDL files to the Quartus project. Se-
lect Project—+Add/Remove Files in Project and select all the
.vhd files in the project directory. This is most easily done by
clicking “Add All” and then removing the non-VHDL files. The
“altera_europa_support.vhd” file is also not necessary.

By default, the name of the top-level entity is the name of
the project. You can use Project—+Set as Top-Level Entity to
change this.

4



Figure 15: Imposing a global timing constraint

Match the pin names to locations by selecting Assignments–

+Import Assignments and choosing the
DE2_pin_assignments.csv file.

Impose a global timing constraint by choosing Assignments–
+Classic Timing Analyzer Wizard.

Select an overall default frequency requirement, then set De-
fault fmax to 50 MHz (Figure 15). Leave the defaults alone on
the next window, then click Finish.

Compile the project and download it to the board. Congratu-
lations! You just built a computer.

2.4 NiosIIIDE

Next, create a new software project for your new computer system.
Since each system is different (e.g., different memory layout,
different peripherals), the software is tied to the system.

Run nios2-ide and switch the workspace to your project di-
rectory.

Select File–+New–+Nios II C/C++ Application.

Name the new (so ft ware) pro jec t so mething l ike
lab3_software (this is arbitrary—it creates a directory with this
name in your project directory).

Select the “nios_system.ptf” file in your project directory as
the SOPC Builder System. This should set the CPU to “cpu_0.”

Finally, select the “Hello World” template and click Finish.
At this point, you can build and run the project on your board, but

it does not do much. Instead, replace “hello_world.c” in the
lab3_software directory (i.e., the name of the software project
you specified) with the code in Figure 16, which exercises the
LED flasher peripheral we added earlier.

3. Bouncing Video Ball

After you implement this project, you will feel a much stronger
connection with Nolan Bushnell, the inventor of the first
commercially-successful videogame, Pong. Of course, you
won’t find it quite as lucrative.

You have two things to design: an Avalon component that
displays a small white rectangle on the screen under software
library
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity lab3 is

port (
signal CLOCK_50 : in std_logic;
signal LEDR : out std_logic_vector(17 downto 0);

SRAM_DQ : inout std_logic_vector(15 downto 0);
SRAM_ADDR : out std_logic_vector(17 downto 0);
SRAM_UB_N, SRAM_LB_N, SRAM_WE_N,
SRAM_CE_N, SRAM_OE_N : out std_logic

);

end lab3;

architecture rtl of lab3 is

component nios_system is
port (

signal clk : in std_logic;
signal reset_n : in std_logic;
signal leds_from_the_leds

: out std_logic_vector(15 downto 0);
signal SRAM_ADDR_from_the_sram

: out std_logic_vector (17 downto 0);
signal SRAM_CE_N_from_the_sram : out std_logic;
signal SRAM_DQ_to_and_from_the_sram

: inout std_logic_vector (15 downto 0);
signal SRAM_LB_N_from_the_sram : out std_logic;
signal SRAM_OE_N_from_the_sram : out std_logic;
signal SRAM_UB_N_from_the_sram : out std_logic;
signal SRAM_WE_N_from_the_sram : out std_logic

);
end component;

signal counter : std_logic_vector(15 downto 0);
signal reset_n : std_logic;

begin

LEDR(17) <= ’1’;
LEDR(16) <= ’1’;

process (CLOCK_50)
begin

if CLOCK_50’event and CLOCK_50 = ’1’ then
if counter = x ffff then
reset_n <= ’1’;

else
reset_n <= ’0’;
counter <= counter + 1;

end if;
end if;

end process;

nios : nios_system port map (
clk => CLOCK_50,
reset_n => reset_n,
leds_from_the_leds => LEDR(15 downto 0),
SRAM_ADDR_from_the_sram => SRAM_ADDR,
SRAM_CE_N_from_the_sr am => SRAM_CE_N,
SRAM_DQ_to_and_from_the_sram => SRAM_DQ,
SRAM_LB_N_from_the_sr am => SRAM_LB_N,
SRAM_OE_N_from_the_sram => SRAM_OE_N,
SRAM_UB_N_from_the_sram => SRAM_UB_N,
SRAM_WE_N_from_the_sram => SRAM_WE_N

);

end rtl;
5

control, and a C program that controls the position of this rect-
angle.

Use the code in video_display.vhd as a starting point for your
Avalon component. It is a simple VGA controller that displays
a large white rectangle against a blue background. It currently
does not have a bus interface. You need to add one and change its

Figure 14: lab3.vhd: The top-level entity



6

behavior so that it displays a small rectangle. Your main challenge
is building an Avalon peripheral. Use the LED flasher from the
tutorial as a basis for building a peripheral.

First, get an Avalon peripheral working by building the regis-
ters you plan to use in the end for your video controller and connect
them to some LEDs to verify you can communicate from the
software to the hardware.

Once you have a working peripheral, integrate your modified
video controller with it.

#include <io.h>
#include <system.h>
#include <stdio.h>

#define IOWR_LED_DATA(base, offset, data) \
IOWR_16DIRECT(base, (offset) * 2, data)

#define IORD_LED_DATA(base, offset)\
IORD_16DIRECT(base, (offset) * 2)

#define IOWR_LED_SPEED(base, data) \
IOWR_16DIRECT(base + 32, 0, data)

int main()

{
int i;
printf("Hello Michael\n");

IOWR_LED_SPEED(LEDS_BASE, 0x0040);

for (i = 0 ;i < 8 ;i++) {
IOWR_LED_DATA(LEDS_BASE, i, 3 << (i *
2));
printf("writing %x\n", i);

}

for (i = 8 ;i < 16 ;i++) {
IOWR_LED_DATA(LEDS_BASE, i, 3 << (32(i *
2)));
printf("writing %x\n", i);
}

for (i = 0 ;i < 16 ;i++) {
printf("reading %x = %x\n", i, IORD_LED_DATA(LEDS_BASE,

i));
}

}
printf("Goodbye

\n”);

return 0;

}

Figure 16: A hello_world.c file that imitates KITT from
Knight Rider (yes, I lived through the 80s). It sets the
cycling speed, fills the LED_flasher peripheral with a
pattern, then reads it back to verify it works as memory.


