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Figure 3.1: A Typical Computer System.
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Figure 3.2: Memory Hierarchy Components.
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Figure 3.3: lllustration of (a) Temporal and (b) Spatial Locality.
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Figure 3.4: Block Placement Schemes: (a) Direct-Mapped, (b) Fully Associative, (c) Set-
Associative.



Cache design
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Writeback
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Figure 3.5: Cache Design Parameters.
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Figure 3.7: Typical Main Memory Organization.
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Figure 3.8: DRAM Chip Organization.
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Figure 3.9: Memory Module Organization.
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Figure 3.10: Virtual to Physical Address Translation.
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Figure 3.11: Virtual Memory System.
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Figure 3.12: Handling a Page Fault.
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Figure 3.13: Typical Page Table Entry.
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Figure 3.14: Multilevel Forward Page Table.
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Figure 3.15. Hashed Page Table.
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Figure 3.16: Direct-Mapped Caches: (a) Single Word Per Block; (b) Multiword Per Block.



Tag |Block offset

Y

Y

Figure 3.17: Fully Associative Cache.
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Figure 3.18: Set-Associative Cache.
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Figure 3.19: Translation of Virtual Word Address to Physical Word Address Using a
Translation Memory.
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Figure 3.20: Translation of Virtual Page Address to Physical Page Address Using a
Translation Memory.
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Figure 3.21: Direct-Mapped TLB.
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Figure 3.22. Associative TLBs: (a) Set-Associative TLB; (b) Fully Associative TLB.
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Figure 3.23: Interaction Between the TLB and the Data Cache.



Virtual page no. (VPN) Virtual page no. (VPN)

T
1 Index

Tag | Index Page offset

| Index 1 BO

p D-cache

PPN P

Data

> Hit/miss

Figure 3.24: Virtually Indexed Data Cache.
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Figure 3.25: Disk Drive Structure.
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Independent

A0 AO | AD A0
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A2 A2 A2 A2
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Bl Bl Bl Bl
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Co co | CO CO
Cl Cl Cl Cl
Cc2 C2 C2 C2

Fine-grained

AD Al A2 A3
BO Bl B2 B3
CoO Cl C2 C3

Coarse-grained

Each disk is represented by a column, each block is represented by a name (A0, Al, A2, etc.), and
blocks from the same file are named with the same letter (e.g., AD, Al, and A2 are all from the
same file). Independent disk arrays place related blocks on the same drive. Fine-grained
interleaving subdivides each block and stripes it across multiple drives. Coarse-grained

interleaving stripes related blocks across multiple drives.

Figure 3.26: Striping Data in Disk Arrays.
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Figure 3.27. Placement of Parity Blocks in RAID Level 4 (Left) vs. RAID Level 5 (Right).
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Figure 3.28: Different Types of Computer System Busses.



Bus design
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Figure 3.29: Bus Design
Parameters.

Point to point
Multidrop (broadcast)

—— Signaling technology (voltage levels, frequency, etc.)
—— Data transfer

Data bus width

Data bus wires

Shared/multiplexed with address lines
Dedicated data lines
Transfer granularity

Single word
Multiple words (burst mode)

Directionality

Unidirectional (single driver per data wire)
Bidirectional (multiple drivers, bus turnarounds required)

—— Clocking strategy

Asynchronous (handshaking required)

Synchronous (single shared clock)
Source synchronous (clock travels with address and/or data)

Bus arbitration

Single bus master (no arbitration necessary)

Multiple bus masters

Arbitration mechanism

Daisy chain
Centralized
Distributed

Switching strategy

Blocking (circuit-switched or pended)
Nonblocking (packet-switched or split transaction)




1/O device communication

Control flow granularity

Fine-grained (shallow adapters)
Coarse-grained (deep adapters, e.g., channels)

Mechanics of control flow

Outbound control flow

Programmed 1/0
Memory-mapped control registers

Inbound control flow

Polling
Interrupt-driven

Mechanics of data flow

Programmed 1/O
Direct memory access (DMA)

Software cache coherence
Hardware cache coherence

Figure 3.30: Communication with 1/0 Devices.
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Time dilation of each thread reduces

effectiveness of temporal locality.

In this example, three users time-share the CPU, overlapping their CPU usage with the disk latency
and think time of the other interactive users. This increases overall throughput, since the CPU is
always busy, but can increase the latency observed by each user. Latency increases due to context
switch overhead and queuing delay (waiting for the CPU while another user is occupying it).
Temporal and spatial locality are adversely affected by time-sharing.

Figure 3.31: Time-Sharing the CPU.



