Predict
Data flow limit = 1.3 Enhanced ILP = 4

G (Verify predictions '
0 Q

Data flow execution Instruction reuse Value prediction

Enhanced ILP = 4

Figure 10.1. Exceeding the Instruction-Level Parallelism (ILP) Dictated by the Data Flow
Limit.

Alpha AXP

|

100.0 -

80.0 -
60.0 -
40.0 -
20,0
0.0
"
:L"t i

Value locality (%)

& &

¢ S 2 ¢
Lo &P& & 3 ‘éﬁq & ﬁ
‘*'-F'M nﬁ & @ ‘ﬁ""b o
PowerPC
100.0 -
E Eﬂ,ﬂ-
2 600
E i
g 4&{)_
Figure = 20,0
10.2: -
o o B % D N
Value éﬁ o &hﬁﬁzﬁ’ @‘p qf f fﬁgﬁﬁ & & gf‘&
Locality. A

The light bars show value locality for a history depth of one, while the dark bars show it for a history depth of sixteen.

Register value locality

100.0

80.0 -

60.0 |-
40.0 -
200} 1 I
00l
éﬁ‘

A &Y
o Q‘D

Register value locality (%)

The light bars show value locality for a history depth of one, while the dark bars show it for a
history depth of four.

Figure 10.3: Register Value Locality.

/* fibonacci series computation */

int fibonacci (x) {

int result = 0;

if (x==0)
result = 0;

else if (x<3)
result = 1;

else {
result = fibonacci (x-2);
result += fibonacci(x-1);

}

return result;
}
/* memoized version */
int memoized fibonaceci (x) |
if (seen_before(x))
return memoized result (x);
else {
int result = fibonacci (x);
memoize (x, result) ;
return result;

}
}

/* linked list example */

int ordered_linked_list_insert (record *x) |{
int position=0;
record *c,*p;

c=head;
while (¢ && (c->data < x->data)) {
++position;
P = C;
} C = C->next;
if (p) {
X->next = p-=>next;
p->next = Xx;
} else
head = x;

return position;

The call to fibonaccifx), shown on the left, can easily be memoized, as shown in the memoized_ fibonacci(x)
function. The call to ordered_linked _list{record *x) would be very difficult to memoize due to its reliance on
elobal variables and side effect updates to those global variables.

Figure 10.4: Memoization Example.

Fetch instruction

No; reuse buffer miss

Yes

Y
Execute instruction

Fail

Succeed; preconditions
match prior instance

Reuse prior result Record outcome

After an instruction is fetched, the history mechanism is checked to see whether the instruction is a candidate
for reuse. If so, and if the instructions preconditions match the historical instance, the historical instance is
reused and the fetched instruction is discarded. Otherwise, the instruction is executed as always, and its
outcome is recorded in the history mechanism.

Figure 10.5: Instruction Reuse

Result V? PCtag SrcOpl SrcOp2 Address

PC of reuse
candidate

PC

Compare?

All stores check for
matching addresses
and mark them invahid.

Source operands

Y

Register

Remote stores in a
multiprocessor system
Reused must also invalidate
result matching entries.

file

The instruction reuse buffer stores all the preconditions required to guarantee correct reuse of prior instances
of instructions. For ALU and branch instructions, this includes a PC tag and source operand values. For
loads and stores, the memory address must also be stored, so that intervening writes to that address will
invalidate matching reuse entries.

Figure 10.6: Instruction Reuse Buffer.

Classification table (CT) PC of predicted Value prediction table (VPT)

<v> <pred history> METCHon <v> < value history >
o
A A
Prediction outcome Predicted value Updated value

The internal structure of a simple value prediction unit (VPU). The VPU consists of two tables: the
classification table (CT) and the value prediction table (VPT), both of which are direct-mapped and
indexed by the instruction address (PC) of the instruction being predicted. Entries in the CT contain two
fields: the valid field, which consists of either a single bit that indicates a valid entry or a partial or complete
tag field that is matched against the upper bits of the PC to indicate a valid field; and the prediction history,

which is a saturating counter of 1 or more bits. The prediction history is incremented or decremented
whenever a prediction is correct or incorrect, respectively, and is used to classify instructions as either
predictable or unpredictable. This classification is used to decide whether or not the result of a particular
instruction should be predicted. Increasing the number of bits in the saturating counter adds hysteresis to

the classification process and can help avoid erroneous classifications by ignoring anomalous values and/or
destructive interference.

Figure 10.7: Value Prediction Unit.

The speculative operand wavefront traverses the dynamic data flow graph as a result of the predicted
outcome of instruction P. Its consumers C1 and C2 propagate the speculative property to their consumers
C3. C4, and C5, and so on. Serial propagation of prediction verification status propagates through the data
flow graph in a similar manner. Parallel propagation, which requires a tag broadcast mechanism, allows all
speculatively executed dependent instructions to be notified of verification status in a single cycle.

Figure 10.8: The Speculative Operand Wavefront.

Figure 10.9:
Example of Value
Prediction with
Selective Reissue.

Predicted CT PC VPT Dependent
Fetch |
Dispatch
buffer

Dispatch

Disp
Reservation Rename ‘_| Reservation
station Predict? buffer Data L station
Reissue ’:
Exec
Complete/

Verify ‘ Completion I Invalidate ‘ Completion I
buffer buffer
| wep— A ctual value Predicted value I

The dependent instruction shown on the right uses the predicted result of the instruction on the left, and is
able to issue and execute in the same cycle. The VP Unit predicts the values during fetch and dispatch, then
forwards them speculatively to subsequent dependent instructions via a rename buffer. The dependent
instruction is able to issue and execute immediately, but is prevented from completing architecturally and
retains possession of its reservation station until its inputs are no longer speculative. Speculatively
forwarded values are tagged with the uncommitted register writes they depend on, and these tags are
propagated to the results of any subsequent dependent instructions. Meanwhile, the predicted instruction
executes on the right, and the predicted value is verified by a comparison against the actual value. Once a
prediction is verified, its tag is broadcast to all active instructions, and all the dependent instructions can
either release their reservation stations and proceed into the completion unit (in the case of a correct
prediction), or restart execution with the correct register values (if the prediction was incorrect).

3.5

6.02 6.29
[1HM = 1.184 Simple

I [C_JHM = 1.274 1PerfCT
30F] . T HM = 1.294 4PerfCT
B HM = 1.304 8PerfCT
B HM = 1.477 Perfect

T

Speedup

R % o £ & f ~$"' A A .-gf‘
D) & N ny P o7 4 &
& Qz‘ o o NS c;"ﬁ& @ﬁ'

The Simple configuration employs a straightforward last-value predictor. The 1PerfCT, 4PerfCT, and 8PerfCT configurations use
perfect confidence, eliminating all mispredictions while maximizing coverage, and choosing from a value history of 1, 4, or 8 last
values, respectively. The Perfect configuration eliminates all true data dependences and indicates the overall performance potential.

Figure 10.10: Value Prediction Speedup for an ldealized Machine Model.

