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load rl. A load rl. A
addirl,rl, 3 addirl, rl, |
storerl, A
load rl, A load rl., A
addirl.rl. 1 addirl, rl, 3
storerl, A storerl, A
storerl, A
(a) (b)
Thread O Thread 1 Thread O Thread 1
load rl, A load rl, A
addirl,rl. 3 addirl.rl, 1
storerl, A
load rl, A load rl, A
addirl, rl, 1 addirl, rl, 3
storerl, A storerl, A
storerl, A
(c) (d)

This figure shows four possible interleavings of the references made by two threads
to a shared variable A, resulting in 3 different final values for A.

Figure 11.1: The Need for Synchronization.



Thread O Thread 1 Thread 0 Thread 1 Thread 0 Thread 1

fetchadd A, 1 fetchadd A, 3 spin: spin: spin: spin:
cmpswp AL, I cmpswp AL, | Irl, A rl, A
bfail spin bfail spin addirl,rl, 1 addirl,rl,3
load rl, A load rl, A sterl, A sterl, A
addirl, rl, 1 addirl, rl, 3 bfail spin bfail spin
store rl, A store rl, A
store 0, AL store 0, AL

(a) (b) (c)

Figure 11.2: Synchronization with (a) Fetch-and-Add, (b) Compare-and-Swap, and (c) Load-
Linked/Store-Conditional.
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Figure 11.3: UMA versus NUMA Multiprocessor Architecture.
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(a) No coherence protocol: stale copy of A at P2

5!A=I @ stA=] stA=l @
R C R

_ ] ]

(b) Update protocol writes through to both copies of A

stA =1 @ stA=l @ @stﬁ.=l
L

Figure 11.4. Update and I ‘ I ‘ |

Invalidate Protocols.

(¢) Invalidate protocol eliminates stale remote copy

An update protocol updates all remote copies, while an invalidate protocol removes remote copies.



In response to local and bus events the coherence controller may need to change the local
coherence state of a line, and may also need to fetch or supply the cache line data.

Figure 11.5: Sample MESI Cache Coherence Protocol.



Reorder ProcO Procl

load
before st A=1 st B=1
store if (load B==0) { if (load A==0) ({
...Critical section . eritical section
) }

If either processor reorders the load and executes it before the store, both processors can enter the mutually
exclusive critical section simultancously.

Figure 11.6: Dekker’s Algorithm for Mutual Exclusion.



Memory

Each processor accesses memory in program order, and accesses from all processors are
interleaved as if memory serviced requests from only one processor at a time.

Figure 11.7: Sequentially Consistent Memory Reference Ordering.
Source: Lamport, 1979.
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| In-order commut I

Loads issue out of order, but loaded addresses are tracked in the load queue. Any remote stores that occur
before the loads retire are snooped against the load queue. Address matches indicate a potential ordering
violation and trigger refetch-based recovery when the load attempts to commit.

Figure 11.8: Read Set Tracking to Detect Consistency Violations.



| ReqA | Rsp~A |Read A from DRAM| Xmit A

(a) Simple bus with atomic transactions

Req A

Req B

ReqB | Rsp~B |Read B from DRAM | Xmit B |

Xmit A

Rsp ~A |Read A from DRAM |

Rsp~B ;Read B fn:lun DRAM
Req C Rsp ~C

Req D

Read C from DRAM

Xmit B

Rsp ~D | Read D from DRAM

Xmit C

(b) Split-transaction bus with separate requests and responses

Xmit D |

l

A split-transaction bus enables higher throughput by pipelining requests, responses, and data transmission.

Figure 11.9: Simple Versus Split-Transaction Busses.
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A processor may communicate with memory through two levels of cache, a load queue, store queue, store-
through queue (needed if L1 is write-through), MSHR (miss-status handling registers), snoop queue. fill
buffers, and write-back buffers. Not shown is the complex control logic that coordinates all this activity.



Static partitioning of execution resources Dynamic partitioning of execution resources

Spatial partition Temporal partition Per cycle Per functional unit

(a) CMP (b) FGMT (c) CGMT (d) SMT

Four possible alternatives are: chip multiprocessing (a), which statucally partitions execution bandwidth;
fine-grained multiprocessing (b), which executes a different thread in alternate cycles; coarse-grained
multithreading (c), which switches threads to tolerate long-latency events; and simultaneous multithreading
(d), which intermingles instructions from multiple threads. The CMP and FGMT approaches partition
execution resources statically, either with a spatial partition by assigning a fixed number of resources to
each processor, or with a temporal partition that time-multiplexes multiple threads onto the same set of
resources. The CGMT and SMT approaches allow dynamic partitioning, with either a per-cycle temporal
partition in the CGMT approach, or a per-functional unit partition in the SMT approach. The greatest
Aexibility and highest resource utilization and instruction throughput are achieved by the SMT approach.

Figure 11.11: Running Multiple Threads on One Chip.

Source: Tullsen et al., 1996.
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Figure 11.12: IBM POWER4: Example Chip Multiprocessor.
Source: Tendler et al., 2001.
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Figure 11.13: CGMT Thread Switch State Machine.
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Figure 11.14: SMT Resource Sharing Alternatives.
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(a) Loop-closing  (b) Control-flow convergence (c) Call/return

There are multiple sources of control independence: in (a), block C eventually
follows block B since the loop has a finite number of iterations: in (b) block E
always follows B independent of which way the branch resolves: and in (c),
block C eventually follows block B after the subroutine call to E completes.

Figure 11.15: Sources of Control Independence.



Assuming each branch is predicted with 75% accuracy, the cumulative branch prediction
rate 1s shown; after fetching branch paths 1, 2, 3, and 4, the next-highest cumulative rate
1s along branch path 5, so it is fetched next.

Figure 11.16: Disjoint Eager Execution
Source: Uht and Sindagi, 1995.



Main thread

“\\\\:“\\“\‘\,\\%\\‘\\“ compadog s
HHHHHHHHHHH

Redundant thread

(a) Fault detection

Prefetch into caches.
resolve branches

(b) Pre-execution

Figure 11.17: Executing the Same Thread.





