
EE487: Applications of Cyber Engineering Name:
SX-13: GNU Privacy Guard

Discussion: Hopefully we all now understand how vulnerable network traffic is to
eavesdropping. Even if data is not being sent over a network, laptop computers get
lost or stolen, and then a hacker has all the time in the world to examine the digital
contents. So we need to have a way to keep data secret.

Encryption solves our problem, mostly. It’s very hard to create a completely
unbreakable cipher that is “unconditionally secure,” but the good news is that we
often just need something that is “computationally secure.” Be sure to do the
reading assignments in Erickson so that you understand this terminology. The
bottom line for engineering is this: encryption is a trade-off between the resources
(and time) necessary to encrypt the data and the length of time that we need to
protect the data. If we only need to keep a secret for a day and our cipher takes
weeks to break under the best of circumstances, then it might be adequate. A more
complicated cipher still works, but it might require too much computation.

Today we’re going to have some fun with various ciphers and make sure that we
understand the basic trade-offs between cipher complexity, key-length, and
message security.

Setup: Open your personal Ubuntu Virtual Machine (VM) using either the VSphere
Client or VMWare Viewer (if the network is having trouble) and be sure you are at a
CLI with the “midshipman” user prompt. You will have sudo NOPASSWD privileges
on your machine, so be careful!

Reading: Erickson pages 396 to page 398 (sections 0x714 and 0x720).

EE487: Applications of Cyber Engineering Name:
SX-13: GNU Privacy Guard

Section 1: Simple Encryption Methods

1. Let’s first explore a very simple encryption method. The Caesar Shift Cipher

(also known as the decoder ring cipher) can be found on the EE488 website. If
you’ve seen “A Christmas Story” you know that Ralphie decoded a special
advertisement from the Ovaltine company using such a method. Let’s try it.

a. Encode the message, “Drink your Ovaltine” using this cipher. Choose any
key that you like. Write down the result (and key)below:

b. What are the three components of your encryption mechanism?

c. Let’s say we wanted to “brute-force” attack this encrypted message. How
many attempts would we need?

d. Thinking about that answer some more, do we really have to try ALL of
the possibilities? On average, if we’re breaking a lot of codes, how many
of the keys do we really have to try (over a long period of time)?

2. Now choose a phrase of your own (keep it to three words or so) and encode it.
Swap the cipher text (encrypted message) with your lab partner, then use the
frequency analysis attack to try and break the message.

a. What is this attack method taking advantage of?

b. Is it a brute-force attack?

3. Extra Credit: How did the U.S. Navy know that Japan was going to attack

Midway and therefore allowed ADM Nimitz to have the U.S. Fleet lying in wait to
surprise them?

EE487: Applications of Cyber Engineering Name:
SX-13: GNU Privacy Guard

Section 2: Symmetric Encryption

4. Go to your Ubuntu CLI and type the command “man gpg” and hit enter. This

gives you an overview of the encryption tool that we’re going to use now. Just
read the summary. GPG is a very powerful program with lots of options. For
now we’ll be using it with simple options.

a. Create a simple text file using “nano message” and typing in a message of
your choice. Be sure to save the file upon exit. Then type “hexdump –C
message” and note what you observe. The left-most column is a count of
the number of bytes. What is the middle column?

b. The right-most column is ASCII and should look familiar. Is your English
message actually stored in the computer? What is stored, and how does
the computer manage to show it to you as if it were English?

c. Now encrypt the file with this command: “gpg –c message” and type in a
passphrase of your choosing when prompted (a passphrase is the same
thing as a key in this case). You should now find a file called
“message.gpg” in the current directory. Type “hexdump –C message.gpg”
and note the output. What are your observations? Is the cipher text the
same number of bytes as the plaintext message?

d. Do you think that your lab partner would be able to decrypt the message
(assuming that they don’t know the passphrase)?

e. If the goal is to keep this message secure for the class period, do you think
you’ve done enough? Could someone decipher your message in ten
years?

f. How might one go about cracking this encrypted message?

EE487: Applications of Cyber Engineering Name:
SX-13: GNU Privacy Guard

g. Now decrypt the message using the command “gpg message.gpg” and
follow the prompts. Did it work? Note: Do not overwrite the file, name
the new one message1, so you can compare to the original.

GPG also prints some results. Be sure to note them. One tells you the

cipher algorithm actually used. The other tells you that the original message
was not digitally signed (we’ll learn all about that next lab).

h. GPG uses the algorithm CAST-5 by default, but let’s just see what happens

if we want to use AES instead. Type this:
gpg –c –-cipher-algo AES message1

then hit enter and use the same passphrase. Then use
hexdump –C message1.gpg

to observe the output. How does it differ from the previous CAST-5
encrypted version?

5. In this lab, we were actually using simple symmetric encryption. It’s called

symmetric because both the sender and receiver use the exact same key to
encrypt and to decrypt the message. The encryption ciphers are designed to
work such that the exact same cipher and key will do both actions (encrypt and
decrypt).

a. What’s the fatal flaw in a symmetric scheme? (Assume we have designed
an unconditionally secure cipher)

b. How might this flaw be mitigated?

c. What about a computationally secure cipher? What additional flaw does
it have?

d. How is this flaw mitigated?

EE487: Applications of Cyber Engineering Name:
SX-13: GNU Privacy Guard

6. Now we’re going to play a class game. When your instructor tells you to, you’re
going to try and pass your message to a classmate on the other side of the room.
You will also have to try to get the secret key to them. Here’s the catch: the
winner is the team that manages to pass two messages without anyone else
managing to intercept and decrypt it.

a. Create a secret message of your choice and put it in a file named with
your alpha login, e.g. “mXXXXXX”. Then encrypt that file with a
passphrase (key) of your choice. Decide for yourself whether it’s better
to have a more complex or simple passphrase and give your rationale
here:

b. Now copy your ciphertext file into your local webserver by typing
cp –a mXXXXXX.gpg ~/booksrc/webroot/

and compile and run tinyweb.c,just as you did in the last lab. Your
ciphertext message is now available at
http://192.168.1.Y/mXXXXXX.gpg, where Y is the last octet of your
machine’s IP address.

c. Now get your IP address, alpha code, and passphrase to your partner so
they can download and decode your message. Try to be creative, and
explain how you transferred this information here:

d. Fight’s On! (yes, this lab was written by an aviator). Your mission is to get
your message to the recipient safely and then try to crack as many of the
other messages as possible. Just don’t get anyone hurt, but feel free to be
sneaky.

EE487: Applications of Cyber Engineering Name:
SX-13: GNU Privacy Guard

Conclusion and Results:

Your typed lab report will consist of two paragraphs, in the first paragraph:
• Briefly describe what you did in the lab in your own words.
• Discuss something new that you learned.

In the second paragraph, answer the questions:
• How could an adversary use this knowledge or these tools for malicious purposes?
• How could you use your new understanding to protect your systems and personnel
from attack?

Staple the completed report to the back of your original lab and turn it in to your
instructor at the beginning of the next class.

