
EE487: Applications of Cyber Engineering Name(s):
SX-4: Creating Programs

MAKE SURE TO BRING YOUR BOOK TO LAB

Discussion: This lab is intended to familiarize students with viewing, editing,
compiling, running, and debugging programs in the Linux environment. Common
open-source Linux tools/programs nano, gedit, gcc, and gdb to accomplish these
tasks. Students should focus on what happens to high-level C commands when they
get compiled down the assembly-language level and become the standard binary
machine language that we have discussed. They should also become familiar with
some of the x86 processor instructions they will see (mov, and, or, add, sub, jmp,
cmp, push, pop, etc.)

Materials: This SX will use the program ‘firstprog.c’ from the Erickson book and
closely follows the activities from pages 19 – 37. The Ubuntu Linux environment
provided on the virtual machine load will be used, and the necessary open source
tools are already installed.

Reading assignment: Erickson, pages 19-37. This security exercise very closely
follows the book, so you should track along with the book instructions carefully.

Before beginning, answer the following questions:

1. Write down basic definitions of the command-line functions we learned last
lab for your reference and memory (you’ll use these frequently). Hint:
remember ls, cd, mv, cp, mkdir, rmdir, sudo ,etc.? These are all really
programs that are provided by the shell itself, since they are so commonly
needed by everyone.

2. Use the man page to write down the names, basic syntax and functions of the
following programs: nano, gedit, gcc, gdb.

EE487: Applications of Cyber Engineering Name(s):
SX-4: Creating Programs

Now begin reading and track along with the author’s instructions. Answer some
questions and take notes as you go.

0x250 – Overview and setup

1. What is the purpose of a “//” in C source code?

2. Why does the program start with an “#include” statement? What functions

within our sample code need this and why?

Notes:

0x251 – The Bigger Picture.

Note. Linux uses a very cool command line syntax called a “pipe” – the symbol “|” on
your keyboard shifted from backslash. This function allows one to chain commands
together, each feeding its output to the following. You’ll see this when the author
does the command objdump.

1. What critical skill or knowledge separates hackers from the average
programmer?

2. Most software companies (at least in the past twenty years) have not spent a
lot of time writing elegant code. Why not?

EE487: Applications of Cyber Engineering Name(s):
SX-4: Creating Programs

3. Try doing the objdump command without using the pipe. What’s the
difference?

4. Why do we use hexadecimal notation? Does the computer speak
hexadecimal? Why not use decimal that we’re used to?

5. How many binary bits does every hex character convert into?

6. Practice converting the instruction in memory register 0x80483a4 (convert
the four hex characters into binary and decimal).

Notes:

EE487: Applications of Cyber Engineering Name(s):
SX-4: Creating Programs

0x252 – The x86 Processor. You weren’t around for the introduction of the 8086
processor, but some of your instructors were. Intel has spent a lot of time and
money improving on that design, but the basic architecture remains the same.

1. What is a “register?”

2. List the x86 registers and their basic characteristics

Notes:

EE487: Applications of Cyber Engineering Name(s):
SX-4: Creating Programs

0x253 – Assembly Language – Don’t forget to set Intel syntax! Carefully step through
ALL of the steps along with the author. The following questions are here to help
your note taking.

1. List 5 of the x86 assembly language instructions you have seen thus far and
their functions.

A)

B)

C)

D)

E)

2. After starting the debugger, it halts where? What does the EIP tell us?

3. What is the name and purpose of the group of instructions prior to the
current location of EIP?

4. What is the shorthand to examine the 8 hexadecimal bytes that occur starting
at the EIP register?

5. What short-hand command would show us the contents, in hex, of the first 8
memory registers AFTER the function prologue?

6. What does “little-endian” mean?

7. What is “ASCII” and why is it used?

Notes:

EE487: Applications of Cyber Engineering Name(s):
SX-4: Creating Programs

Conclusion and Results:

Your typed lab report will consist of two paragraphs, in the first paragraph:
• Briefly describe what you did in the lab in your own words.
• Discuss something new that you learned.

In the second paragraph, answer the questions:
• How could an adversary use this knowledge or these tools for malicious purposes?
• How could you use your new understanding to protect your systems and personnel
from attack?

Staple the completed report to the back of your original lab and turn it in to your
instructor at the beginning of the next class.

	Reading assignment: Erickson, pages 19-37. This security exercise very closely follows the book, so you should track along with the book instructions carefully.

