EE488C – Spring 2008

Lab 1 (version 1.0)
Finite State Machines
Demo and Report Due 17-Jan (Hard deadline)
Part I

We wish to implement a finite state machine (FSM) that recognizes two specific sequences of applied input symbols,

namely four consecutive 1s or four consecutive 0s. There is an input w and an output z. Whenever w = 1 or

w = 0 for four consecutive clock pulses the value of z has to be 1; otherwise, z = 0. Overlapping sequences are

allowed, so that if w = 1 for five consecutive clock pulses the output z will be equal to 1 after the fourth and fifth

[image: image1.emf]pulses. Figure 1 illustrates the required relationship between w and z.
Develop a Moore FSM to solve this problem. Design and implement your circuit on the DE2 board as follows.

1. Create a new Quartus II project for the FSM circuit. Select as the target chip the Cyclone II EP2C35F672C6, which is the FPGA chip on the Altera DE2 board.

2. Write a VHDL file that instantiates the necessary flip-flops in the circuit and which specifies the logic expressions that drive the flip-flop input ports. Use only simple assignment statements in your VHDL code to specify the logic feeding the flip-flops. Note that the one-hot code enables you to derive these expressions by inspection. Use the toggle switch SW0 on the Altera DE2 board as an active-low synchronous reset input for the FSM, use SW1 as the w input, and the pushbutton KEY0 as the clock input which is applied manually. Use the green LED LEDG0 as the output z, and assign the state flip-flop outputs to the red LEDs LEDR8 to LEDR0.

3. Include the VHDL file in your project, and assign the pins on the FPGA to connect to the switches and the LEDs, as indicated in the User Manual for the DE2 board. Compile the circuit.

4. Simulate the behavior of your circuit.

5. Once you are confident that the circuit works properly as a result of your simulation, download the circuit into the FPGA chip. Test the functionality of your design by applying the input sequences and observing the output LEDs. Make sure that the FSM properly transitions between states as displayed on the red LEDs, and that it produces the correct output values on LEDG0.

6. Finally, consider a modification of the one-hot code given in Table 1. When an FSM is going to be implemented in an FPGA, the circuit can often be simplified if all flip-flop outputs are 0 when the FSM is in the reset state. This approach is preferable because the FPGA’s flip-flops usually include a clear input port, which can be conveniently used to realize the reset state, but the flip-flops often do not include a set input port.
Deliverables: Demonstrate the correct behavior of this system to your professor, and submit a report detailing your FSM design, your well-commented VHDL code, and any observations.
